Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 64 | 1 |

Tytuł artykułu

Negative effect of Camu-Camu (Myrciaria dubia) despite high vitamin C content on iron bioavailability, using a Caco-2 cell model

Treść / Zawartość

Warianty tytułu

Języki publikacji



It is well known that vitamin C is an important enhancer of nonheme iron bioavailability due to its high reducing capacity. Camu-camu, a fruit that grows in the jungle of Peru, contains high amount of vitamin C (2,780 mg per 100 g). In this study, we investigated the effect of camu-camu on nonheme iron bioavailability from two different meals (rice with lentils and wheat flour porridge) using an in vitro Caco-2 cell model. These two meals were treated with three different camu-camu juice concentrations (C0 = 0 g, C1 = typical consumption, and C2 = 3X typical consumption). The results showed that camu-camu reduced rather than enhanced nonheme iron bioavailability. The inhibiting trend was significant (p<0.0001) in the wheat flour porridge (from 124 to 91 and 35 µg ferritin/µg protein, for C0, C1 and C2, respectively). With the rice with lentils, there was no significant effect of camu-camu due to the high polyphenols and phytate contents of the meal. Relative bioavailability values obtained showed significant decrease with increasing camu-camu juice concentration for both meals. As expected, the ascorbic acid added to the meals at a concentration equivalent to that present in C2, had no effect on bioavailability with rice meal but increased significantly with wheat flour meal. The findings of this study suggest that camu-camu, in the traditional way of preparation, may significantly reduce nonheme iron bioavailability because of its high polyphenol content which overrides the beneficial effect of its high ascorbic acid content.

Słowa kluczowe








Opis fizyczny



  • Academic Department of Nutrition, Universidad Nacional Agraria La Molina, Lima, Peru
  • Instituto de Investigacion Nutricional (IIN), Lima, Peru
  • Academic Department of Nutrition, Universidad Nacional Agraria La Molina, Lima, Peru
  • Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, United States
  • National Agricultural Innovation Institute (INIA), Loreto, Peru
  • Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, United States


  • 1. Au A.P., Reddy M.B., Caco-2 cells can be used to assess human iron bioavailability from semipurifed meal. J. Nutr., 2000, 130, 1329–1334.
  • 2. Chidambaram M.V., Reddy M.B., Thompson J.L., Bates G.W., In vitro studies of iron bioavailability. Probing the concentration and oxidation – reduction of pinto bean iron with ferrous chromogens. Biol. Trace Elem. Res., 1989, 19, 25–40.
  • 3. Collazos C., Tablas Peruanas de Composición de alimentos. Ministerio de Salud. 7th. Edition. 1996. Lima, Perú, p. 86.
  • 4. Cook J.D., Monsen E.E., Vitamin C, the common cold, and iron absorption. Am. J. Clin. Nutr., 1977, 30, 235–241.
  • 5. Diaz M., Rosado J.L., Allen L.H, Arams S., Garcia O.P., The efficacy of a local ascorbic acid–rich food in improving iron absorption from Mexican diets: a field study using stable isotopes. Am. J. Clin. Nutr., 2003, 78, 436–440.
  • 6. Endes Continua. Encuesta Demográfica y de Salud Familiar on Perú: Resultados de la encuesta demográfica y de salud familiar, 2009, [Online]. Available: [].
  • 7. Glahn R.P., Lee O.A., Yeung A., Goldman M.I., Miller D.D., Caco-2 cell ferritin formation predicts nonradiolabeled food iron availability in an in vitro digestion/Caco-2 cell culture model. J. Nutr., 1998, 128, 1555–1561.
  • 8. Jovani M., Barbera R., Farre R., Martin de Aguilera E., Calcium, iron and zinc uptake from digests of infant formulas by Caco-2 cells. J. Agric. Food Chem., 2001, 49, 3480–3485.
  • 9. Lynch S.R., Cook J.D., Interaction of vitamin C and iron. Ann. N.Y. Acad. Sci., 1980, 355, 32–44.
  • 10. McGown E.L., Rusnak M.G., Lewis C.M., Tillotson J.A., Tissue ascorbic acid analysis using ferrozine compared with the dinitrophenylhydrazine method. Anal. Biochem., 1982, 119, 55–61.
  • 11. Munoz A.M., Ramos-Escudero F., Alvarado-Ortiz C., Castaneda B., Evaluación de la capacidad antioxidante y contenido de compuestos fenólicos em recursos vegetales promisorios. Rev. Soc. Quim, Perú., 2007, 73, 142–149.
  • 12. Proulx A.K., Reddy M.B., Iron bioavailability of hemoglobin from soy root nodules using a Caco-2 cell culture model. J. Agric. Food Chem., 2006, 54, 1518–1522.
  • 13. Proulx A.K., Reddy M.B., Fermentation and lactic acid addition enhance iron bioavailability of maize. J. Agric. Food Chem., 2007, 55, 2749–2754.
  • 14. Siegenberg D., Baynes R.D., Bothwell T.H., Macfarlane B.J., Lamparelli R.D., Car N.G., MacPhail P., Schmidt U., Tal A y F Mayet, Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and the phytates on nonheme-iron absorption. Am. J. Clin. Nutr., 1991, 53, 537–541.
  • 15. Torrance J.D., Bothwell T.H., A simple technique for measuring storage iron concentrations in formalinised liver samples. S. Afr. J. Med. Sci., 1968, 33, 9–11.
  • 16. United Nations Children´s Fund (UNICEF), United Nations University (UNU), World Health Organization (WHO, 2001) on Iron Deficiency Anaemia. Assessment, prevention and control. A guide for programme managers. WHO/NHD/01.3. [Online].Available at: [].
  • 17. USDA National Nutrient Data Base for Standard Reference. Nutrient Laboratory Data. Agricultural Research Service. United States Department of Agriculture (USDA) on Nutrient Laboratory Data. [Online]. Available at: [].
  • 18. Yun S., Habicht J.P., Miller D.D., Glahn R.P., An in vitro digestion/Caco-2 cell culture system accurately predicts the effects of ascorbic acid and polyphenolic compounds on iron bioavailability in humans. J. Nutr., 2004, 134, 2717–2721.


Rekord w opracowaniu

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.