Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 26 | 1 |

Tytuł artykułu

Consensus for multiple unmanned surface vehicle (MUSV) systems with Markov switching topologies


Warianty tytułu

Języki publikacji



This paper is concerned with sampled-data leader following consensus of multiple unmanned surface vehicle (MUSV) systems with random switching network topologies and wave-induced disturbance. By modelling the switching of network topologies with the use of a Markov process and considering the effect of wave-induced disturbance, a new sampled-data consensus control protocol is proposed. By employing an appropriate Lyapunov-Krosovskii function method and the weak infinitesimal operation, a novel stability criterion is derived, which ensures that the MUSV system can reach robustly leader-following consensus with H∞ performance satisfied. Based on this criterion, the Markov dependent switching consensus controller gains are obtained by solving a set of linear matrix inequalities. Finally, an illustrative example is given to verify the effectiveness of the proposed control scheme for MUSV systems

Słowa kluczowe








Opis fizyczny



  • Key Laboratory of Intelligent Perception and Advanced Control State Ethnic Affairs Commission, Dalian, China
  • Dalian Minzu University, Liaohe West Road, Jinzhou New District, 116600 Dalian, China
  • College of Mechanical and Electronic Engineering, Dalian Maritime University, Ganjingzi Street, 116026 Dalian, China
  • Key Laboratory of Intelligent Perception and Advanced Control State Ethnic Affairs Commission, Dalian, China
  • Dalian Minzu University, Liaohe West Road, Jinzhou New District, 116600 Dalian, China


  • 1. Luca C., Fabio M., Domenico P., and Mario T.: Leader-follower formation control of nonholonomic mobile robots with input constraints. Automatica, 2008, 44(5): pp. 1343–1349.
  • 2. Xing L. T., Wen C. Y., Guo F. H., Liu Z. T., and Su H. Y.:Event-based consensus for linear multi-agent systems without continuous communication. IEEE Transactions on Cybernetics, 2017, 47(8): pp. 2132–2142.
  • 3. Yu X, Liu L, Feng G. Leader-following consensus of multiple unmanned aerial vehicles with input constraints and local coordinate frames. 2016 IEEE International Conference on Advanced Intelligent Mechatronics, 2016, pp. 51061–1066.
  • 4. Jia Y. N., Wang L.: Leader-follower flocking of multiple robotic fish. IEEE/ASME Transactions on Mechatronics, 2015, 20(3): pp. 1372–1383.
  • 5. Liu Z. Q., Wang Y. L., Wang T. B.: Incremental predictive control-based output consensus of networked unmanned surface vehicle formation systems. Information Science, 2018, 457–458: pp. 166–181.
  • 6. Yi J. W., Wang Y. W., Xiao J. W.: Consensus in Markovian jump second-order multi-agent systems with random communication delay. IET Control Theory and Application, 2014, 8(16): pp. 1666–1675.
  • 7. Ding L., Guo G.: Sampled-data leader-following consensus for nonlinear multi-agent systems with Markovian switching topologies and communication delay. Journal of the Franklin Institute, 2015, 352: pp. 369–383.
  • 8. Kaviarasan B., Sakthivel Chao Wang C., Alzahrani F.: Resilient control design for consensus of nonlinear multi-agent systems with switching topology and randomly varying communication delays. Neurocomputing, 2018, 311: pp. 155–163.
  • 9. Li C. J., Liu G. P.: Consensus for heterogeneous networked multi-agent systems with switching topology and time-varying delays. Journal of the Franklin Institute, 2018, 355: pp.4198–4217.
  • 10. Dai J. T., Guo G.: Event-triggered leader-following consensus for multi-agent systems with semi-Markov switching topologies. Information Sciences, 2018, 459: pp. 290–301
  • 11. Van der Klugt P. G. M.: Rudder Roll Stabilization. Ph. D. dissertation, Faculty Elect. Eng., Math. Comput. Sci., Delft Univ. Technol., Delft, The Netherlands, 1987.
  • 12. Van Amerongen J., Van der Klugt P. G. M., and Van Nauta Lemke H. R.: Rudder roll stabilization for ships. Automatica, 1990, 26(4): pp. 679–690.
  • 13. Wang Y. -L., Han Q. -L.: Network-based heading control and rudder oscillation reduction for unmanned surface vehicles. IEEE Transactions Control Systems Technology, 2017, 25(5): pp. 1609–1620.
  • 14. Han Q.–L.: Absolute stability of time-delay systems with sector-bounded nonlinearity. Automatica, 2005, 41(12): pp. 2171–2176.
  • 15. Bellman R., Stability theory of differential equations, McGraw-Hill, New York, 1953.
  • 16. Peng C., Zhang J., Han Q. –L.: Consensus of multi-agent systems with nonlinear dynamics using an integrated sampled-data-based event-triggered communication scheme. IEEE Transactions on Systems, Man, And Cybernetics systems, 2018, (online).
  • 17. Zhenman G., Yong H., Min, W.: New constructing method of Lyapunov-Krasovskii functionals for stability of time-varying delay systems. IECON 2017 – 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017, pp. 5639–5643.
  • 18. Fossen T. I.: Guidance and Control of Ocean Vehicles. Hoboken, NJ, USA: Wiley, 1994

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.