PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 27 | 1 |
Tytuł artykułu

Prediction of long-term groundwater recharge by using hydropedotransfer functions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The investigations to estimate groundwater recharge were performed. Improved consideration of soil hydrologic processes yielded a convenient method to predict actual evapotranspiration and hence, groundwater recharge from easily available data. For that purpose a comprehensive data base was needed, which was created by the simulation modelSWAPcomprising 135 different site conditions and 30 simulation years each. Based upon simulated values of actual evapotranspiration, a transfer function was developed employing the parameter b in the Bagrov differential equation dEa/dP = 1- (Ea/Ep)b. Under humid conditions, the Bagrov method predicted long-term averages of actual evapotranspiration and groundwater recharge with a standard error of 15 mm year-1 (R = 0.96). Under dry climatic conditions and groundwater influence, simulated actual evapotranspiration may exceed precipitation. Since the Bagrov equation is not valid under conditions like these, a statistic-based transfer function was developed predicting groundwater recharge including groundwater depletion with a standard error of 26mm(R = 0.975). The software necessary to perform calculations is provided online.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
27
Numer
1
Opis fizyczny
p.31-37,fig.,ref.
Twórcy
autor
  • Faculty of Agricultural and Environmental Sciences, University of Rostock, Satower 48, 18051 Rostock, Germany
autor
  • Faculty of Agricultural and Environmental Sciences, University of Rostock, Satower 48, 18051 Rostock, Germany
autor
  • Department of Ecology, Technical University Berlin, School IV, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
Bibliografia
  • Allen R.G., Wright M.E., and Burman R.D., 1989. Operational estimates of evapotranspiration. Agron. J., 81, 650-662.
  • Bohne K., 2005. An Introduction into Applied Soil Hydrology. Catena Verlag Reiskirchen, Germany.
  • Bonta J. and Müller M., 1999. Evaluation of the Glugla method for estimating evapotranspiration and groundwater recharge. Hydrol. Sci., 44(5), 743-761.
  • Glugla G., Jankiewicz P., Rachinow C., Lojek K., and Richter K., 2003.BAGLUVA- Wasserhaushaltsverfahren zur Berechnung vieljähriger Mittelwerte der tatsächlichen Verdunstung und des Gesamtabflusses. Bundesanstalt für Gewässerkunde, Koblenz, Germany.
  • Glugla G. and Tiemer K., 1971. Ein verbessertes Verfahren zur Berechnung der Grundwasserneubildung. Wasserwirtschaft, Wassertechnik, 20(10), 349-353.
  • Jury W.A., Gardner W.R., Gardner W.H., 1991. Soil Physics. Wiley Press, New York, USA.
  • Kroes J.G. and van Dam J.C. (Eds), 2003. Reference Manual SWAP version 3.0.3. Alterra Report, 773, Wageningen, the Netherlands.
  • Kroes J.G., van Dam J.C., Huygen J., and Vervoort R.W., 1999. Simulation of water flow, solute transport and plant growth in the Soil-Water-Atmosphere-Plant environment: User’s Guide od SWAP version 2. Technical Document Nr. 53 DLOWinand Staring Centre, Wageningen, the Netherlands.
  • Luckner L., van Genuchten M.T., and Nielsen D.R., 1989.Aconsistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface. Water Resour. Res., 25, 10, 2187-2193.
  • Metselaar K. and de Jong van Lier Q., 2007. The shape of the transpiration reduction function under plant water stress. Vadose Zone J., 6, 124-139.
  • Renger M., Bohne K., Facklam M., Harrach T., Riek W., Schäfer W., Wessolek G., and Zacharias S., 2009. Bodenphysikalische Kennwerte und Berechnungsverfahren für die Praxis. Bodenökologie Bodengenese, 40, 20-26.
  • Richter D.U., 1995. Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Messfehlers des Hellmann- Niederschlagsmessers. Berichte des Deutschen Wetterdienstes, 194, Offenbach, Germany.
  • Scheffer F. and Schachtschabel P., 1998. Lehrbuch der Bodenkunde. Ferdinand Enke Verlag, Stuttgart, Germany.
  • Twarakavi N., 2009. An objective analysis of the dynamic nature of field capacity. WRR45, W10410 doi: 10.1029/2009WR007944.
  • Twarakavi N., Simunek J., and Schaap G., 2010. Can texturebased classification optimally classify soils with respect to soil hydraulics? Water Resour. Res., 46, W01501, doi:10.1029/2009WR007939.
  • van Dam J.C., Groenendijk K.P., Hendriks R.F.A., and Kroes J.G., 2008. Advances of modeling water flow in variably saturated soils with SWAP. Vadose Zone J., 7(2), 640-653.
  • van Genuchten M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892-898.
  • Vardavas I.M., 1989. A Fibonacci search technique for model parameter selection. Ecol. Modeling, 48, 65-81.
  • Wessolek G., Bohne K., Duijnisveld W., and Trinks S., 2011. Development of hydro-pedotransfer functions to predict capillary rise and actual evapotranspiration for grassland sites. J. Hydrol., 400, 429-437.
  • Wessolek G., Duijnisveld W.H.M., and Trinks S., 2008. Hydropedotransfer functions (HPTFs) for predicting annual percolation rate on a regional scale. J. Hydrol., 356, 17-27.
  • Zacharias S. and Bohne K., 2008. Attempt of a flux-based evaluation of field capacity. J. Plant Nutr. Soil Sci., 171(3), 399-408.
Uwagi
PL
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-03446947-1d03-4a7c-b1a5-d017252dc5a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.