Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 5 |

Tytuł artykułu

Comparing sorption characteristics of Tetrabromobisphenol-A, bisphenol-A, and 2,6-dibromophenol in a single-aolute aystem


Warianty tytułu

Języki publikacji



Tetrabromobisphenol-A (TBBPA) and its analogue compounds (bisphenol-A (BPA) and 2,6-dibromophenol (2, 6-DBP)) sorption on CTMAB-clays was investigated in this paper through bath experiments. Montmorillonite and kaolinite modified by CTAMB, as the adsorbent, were firstly characterized by XRD, FTIR and SEManalysis. The surface areas was determined using N2 (77K) sorption-desorption analysis. Kinetic studies showed that sorption reached equilibrium in 5 hours and followed the pseudosecond order kinetic model. The intra-particle diffusion model for sorption was also investigated and compared to identify the sorption mechanism. The sorption isotherms, well fitted by Freundlich model, were changed from being non-linear to being linear with intercalating CTMAB into clays, which indicated that CTMAB increased the partition interaction. A combination of partition and specific sorption might be contributed to TBBPA and its composition products sorption mechanism. The Freundlich coefficients (kF) and distribution coefficients (kd) for both two adsorbents were primarily increased by increasing amount of adsorbed CTMAB, while the organic carbon normalized sorption coefficients (koc) did not follow this trend. Meanwhile, 100%CEC-CTMAB-Montmorillonite showed an advantage of removal of the selected compounds than 100%CEC-CTAMB-Kaolinite. The sorption capacity of BPA was bigger than that of 2,6-DBP in spite of their similar hydrophobicity, which indicated some molecule properties might influence the sorption on CTMAB-clays. Moreover, the negative ΔG0 and ΔH0 indicated the spontaneous and exothermal process. The TBBPA sorption on CTMAB-clays was considerably enhanced in the acid condition.

Słowa kluczowe








Opis fizyczny



  • School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
  • School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
  • School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
  • School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China


  • 1. DeCarlo V.J. Studies on brominated chemicals in the environment [J]. Annals of the New York Academy of Sciences, 320 (1), 678, 1979.
  • 2. Suzuki S., Hasegawa A. Determination of hexabromocyclododecane diastereoisomers and tetrabromobisphenolA in water and sediment by liquid chromatography/mass spectrometry [J]. Analytical sciences: the international journal of the Japan Society for Analytical Chemistry, 22 (3), 469, 2006.
  • 3. Xie Z., Ebinghaus R., Lohmann R., Heemken O., Caba A., Püttmann W. Trace determination of the flame retardant tetrabromobisphenol A in the atmosphere by gas chromatography – mass spectrometry [J]. Analytica chimica acta, 584 (2), 333, 2007.
  • 4. Voordeckers J.W., Fennell D.E., Kristi J., HAGgblom M.M. Anaerobic biotransformation of tetrabromobisphenol A, tetrachlorobisphenol A, and bisphenol A in estuarine sediments [J]. Environmental science & technology, 36 (4), 696, 2002.
  • 5. Peng X., Zhang Z., Zhao Z., Jia X. 16S ribosomal DNA clone libraries to reveal bacterial diversity in anaerobic reactor-degraded tetrabromobisphenol A [J]. Bioresource technology, 112, 75, 2012.
  • 6. Gándara J.S., Abu ín S.P., Losada P.P., Lozano J.S. Determination of Bisphenols A and F in Noncured Epoxy Resins by RP-HPLC – Fluorescence Techniques[J]. Journal of chromatographic science, 31 (11), 450, 1993.
  • 7. Jakab E., Uddin M.A., Bhaskar T., Sakata Y. Thermal decomposition of flame-retarded high-impact polystyrene [J]. Journal of analytical and applied pyrolysis, 68, 83, 2003.
  • 8. Terakado O., Ohhashi R., Hirasawa M. Thermal degradation study of tetrabromobisphenol-A under the presence metal oxide: Comparison of bromine fixation ability [J]. Journal of Analytical and Applied Pyrolysis, 91 (2), 303, 2011.
  • 9. Ike M., Chen M.Y., Jin C.S., Fujita M. Acute toxicity, mutagenicity, and estrogenicity of biodegradation products of bisphenol-A. Environ. Toxicol. 17, 457, 2002.
  • 10. Legler J., Brouwer A. Are brominated flame retardants endocrine disruptors? [J]. Environment International, 29 (6), 879, 2003.
  • 11. Decherf S., Seugnet I., Fini J.B., Clerget - Froidevaux M.S., Demeneix B.A. Disruption of thyroid hormone-dependent hypothalamic set-points by environmental contaminants[J]. Molecular and cellular endocrinology, 323 (2), 172, 2010.
  • 12. Birnbaum L.S., Staskal D.F. Brominated flame retardants: cause for concern? [J]. Environmental health perspectives, 112 (1), 9, 2004.
  • 13. Hassenkl över T, Bickmeyer U. The marine secondary metabolites 2, 4-dibromophenol and 2, 4, 6-tribromophenol differentially modulate voltage dependent ion currents in neuroendocrine (PC12) cells [J]. Aquatic toxicology, 79 (4), 384, 2006.
  • 14. Olsen C.M., Meussen -Elholm E.T.M., Holme J.A., Hongslo J.K. Brominated phenols: characterization of estrogen-like activity in the human breast cancer cell-line MCF-7 [J]. Toxicology letters, 129 (1), 55, 2002.
  • 15. Zhang J., He S.L., Ren H.X., Wang L.P., Tian L.J. Removal of tetrabromobisphenol-A from wastewater by ozonation[J]. Procedia Earth and Planetary Science, 1 (1), 1263, 2009.
  • 16. Horikoshi S., Miura T., Kajitani M., Horikoshi N., Serpone N. Photodegradation of tetrahalobisphenol-A(X = Cl, Br) flame retardants and delineation of factors affecting the process [J]. Applied Catalysis B: Environmental, 84 (3), 797, 2008.
  • 17. Si L., Shaogui Y., Xiaodong W., Cheng S. Reductive degradation of tetrabromobisphenol A over iron - silver bimetallic nanoparticles under ultrasound radiation [J]. Chemosphere, 79 (6), 672, 2010.
  • 18. Peng X., Jia X. Optimization of parameters for anaerobic co-metabolic degradation of TBBPA [J]. Bioresource technology, 148, 386, 2013.
  • 19. Peng X., Zhang Z., Luo W., Jia X. Biodegradation of tetrabromobisphenol A by a novel Comamonas sp. Strain, JXS-2-02, isolated from anaerobic sludge [J]. Bioresource technology, 128, 173, 2013.
  • 20. Wei Q., Nakato T. Competitive sorption of phenols on organically modified layered hexaniobate K4Nb6O17 [J]. Microporous and mesoporous materials, 96 (1), 84, 2006.
  • 21. Shu Y., Li L., Zhang Q., Wu H. Equilibrium, kinetics and thermodynamic studies for sorption of chlorobenzenes on CTMAB modified bentonite and kaolinite [J]. Journal of hazardous materials, 173 (1), 47, 2010.
  • 22. Seliem M.K., Komarneni S., Byrne T., Cannon F.S., Shahien M.G., Khalil A.A., Abd EI-Gaid, I.M. Removal of nitrate by synthetic organosilicas and organoclay: Kinetic and isotherm studies [J]. Separation and Purification Technology, 110, 181, 2013.
  • 23. Sun Z., Yu Y., Li M., Zheng F., Yu H. Sorption behavior of tetrabromobisphenol A in two soils with different characteristics [J]. Journal of hazardous materials, 160 (2), 456, 2008.
  • 24. U.S. National Library of Medicine: TOXICOLOGY DATA NETWORK (TOXNET DATA BASES),, 2014.
  • 25. Zhu R., Zhu L., Xu L. Sorption characteristics of CTMAbentonite complexes as controlled by surfactant packing density [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 294 (1), 221, 2007.
  • 26. Sawhney B.L., Brown K. Sorption dynamics of organic compounds in soils and sediments [J]. 1989.
  • 27. Braida W.J., White J.C., Ferrandino F.J., Pignatello J.J. Effect of solute concentration on sorption of polyaromatic hydrocarbons in soil: uptake rates [J]. Environmental science & technology, 35 (13), 2765, 2001.
  • 28. Gereli G., Seki Y., Murat Kuşoğlu İ., Yurdako ç K. Equilibrium and kinetics for the sorption of promethazine hydrochloride onto K10 montmorillonite [J]. Journal of colloid and interface science, 299 (1), 155, 2006.
  • 29. Ma J., Zhu L. Removal of phenols from water accompanied with synthesis of organobentonite in one-step process [J]. Chemosphere, 68 (10), 1883, 2007.
  • 30. Pan B.o., Baoshan Xing . Competitive and complementary sorption of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials. Journal of agricultural and food chemistry 58 (14), 8338, 2010.
  • 31. Park Y., Sun Z., Ayoko G.A., Frost R.L. Bisphenol A sorption by organo-montmorillonite: Implications for the removal of organic contaminants from water [J]. Chemosphere, 107, 249, 2014.
  • 32. Han Wei , Lei Luo , Shuzhen Zhang . Sorption of tetrabromobisphenol A on soils: contribution of soil components and influence of soil properties [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 428, 60, 2013.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.