PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |
Tytuł artykułu

Effect of sunny/shady slopes on phases of precipitation in China’s Tianshan Mountains

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Precipitation is an important element in the hydrological cycle in mountainous regions. Temporal and spatial variations in precipitation and in its two phases – rain and snow – over the northern and southern aspects of the slopes of the Tianshan Mountains are compared and analyzed using 55-year data (1961-2015). The results of the analysis are as follows: 1) The average annual precipitation shows an upward trend: rainfall on the northern slopes increase by 6.7 mm per decade and that on the southern slopes by 6.4 mm per decade; the corresponding figures for snow are 2.0 mm and 4.2 mm; and the ratio of snowfall to precipitation (S/P) showed a weak decreasing trend on both the slopes. 1) At a confidence level of 0.05, the M-K test shows that rain, snow, and S/P increased after the change point, while rain and snow change significantly in the proportions,but S/P does not. 2) On the northern slopes, the periodicity of major changes is 25 years for rain and 30 years for snow, whereas on the southern slopes the pattern is the exact opposite, the periodicity of major changes being 25 years for rain and 30 years for snow.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
28
Numer
3
Opis fizyczny
p.1651-1663,fig.,ref.
Twórcy
autor
  • College of Water Resources and Architectural Engineering, Shihezi University, Shihezi, China
autor
  • School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, China
autor
  • Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
autor
  • College of Architecture and Civil Environment, Xihua University, Chengdu, China
Bibliografia
  • 1. Ye H., Cohen J., Rawlins M. Discrimination of solid from liquid precipitation over Northern Eurasia using surface atmospheric conditions. Journal of Hydrometeorology. 14 (4), 1345, 2013.
  • 2. Feiccabrino J., Graff W., Lundberg A., Sandström N., Gustafsson D. Meteorological knowledge useful for the improvement of snow rain separation in surface based models. Hydrology. 2 (4), 266, 2015.
  • 3. Lenderink G., Fowler H.J. Hydroclimate: Understanding rainfall extremes. Nature Climate Change. 7 (6), 391, 2017.
  • 4. WMO. Reducing and managing risks of disasters in a changing climate. WMO Bulletin. Volume 62 (Special Issue), 23, 2013.
  • 5. TEDESCO M., DOHERTY S., FETTWEIS X., Alexander P., Jeyaratnam J., Stroeve J. The darkening of the Greenland ice sheet, trends, drivers and projections (1981-2100). Cryosphere Discussions. 9 (5), 5595, 2016.
  • 6. CANNON F., CARVALHO L.M.V., JONES C., Bookhagen B. Multi-annual variations in winter westerly disturbance activity affecting the Himalaya. Climate Dynamics. 44 (1-2), 441, 2015.
  • 7. Colli M., Rasmussen R., Thériault J.M., Lanza L.G., Baker C.B., Kochendorfer J. An improved trajectory model to evaluate the collection performance of snow gauges. Journal of Applied Meteorology & Climatology. 54 (8), 1826, 2015.
  • 8. Marks D., Winstral A., Reba M. An evaluation of methods for determining during-storm precipitation phase and the rain/snow transition elevation at the surface in a mountain basin. Advances in Water Resources. 55 (3), 98, 2013.
  • 9. IPCC. Climate change 2014, impact, adaptation and vulnerability. Cambridge University Press, 2014.
  • 10. WU Y., LIU S., YAN W., Xia J., Xiang W., Wang K., Luo Q., Fu W., Yuan W. Climate change and consequences on the water cycle in the humid Xiangjiang River Basin, China. Stochastic Environmental Research & Risk Assessment. 30 (1), 225, 2016.
  • 11. Berghuijs W.R., Woods R.A., Hrachowitz M.A. precipitation shift from snow towards rain leads to a decrease in streamflow. Nature Climate Change. Volume 4, 583, 2014.
  • 12. LISI P.J., SCHINDLER D.E., CLINE T.J., Scheuerell M.D., Walsh P.B. Watershed geomorphology and snowmelt control stream thermal sensitivity to air temperature. Geophysical Research Letters. 42 (9), 3380, 2015.
  • 13. Chen Y.N., Li Z., Fang G.H., Deng H. Impact of climate change on water resources in the Tianshan Mountains, Central Asia. Journal of Geographical Sciences. 72 (1), 18, 2017.
  • 14. Kong Y., Pang Z. Evaluating the sensitivity of glacier rivers to climate change based on hydrograph separation of discharge. Journal of hydrology. Volume 434, 121, 2012.
  • 15. Chen Y.N., Li Z., Fan H.T., Wang H.J., Fang G.H. Research progress on the impact of climate change on water resources in the arid region of Northwest China. Journal of Geographical Sciences. 69 (9), 1295, 2014.
  • 16. Barnett T.P., Adam J.C., Lettenmaier D.P. Potential impacts of a warming climate on water availability in snow dominated regions. Nature. Volume 438, 303, 2005.
  • 17. You F.C., Guo L.X., Shi Y.S., Zeng J., Center H.C. Discrimination index of precipitation phase state and its verification in Beijing. Journal of Meteorology & Environment, 29 (5), 49, 2013.
  • 18. Lee S.M., Han S.U., Won H.Y., Ha J.C., Lee Y.H., Lee J.H., Park J.C. A method for the discrimination of precipitation type using thickness and improved matsuo’s scheme over South Korea. Atmosphere. 24 (2), 151, 2014.
  • 19. DING B., YANG K., QIN J., Wang L., Chen Y., He X. The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization. Journal of Hydrology. 513 (11), 154, 2014.
  • 20. YU J., ZHU H., QIU X., CAO W. A method to determine winter precipitation type in Anhui. Meteorological Monthly. 43 (9), 1052, 2017 [In Chinese].
  • 21. FERNÁNDEZ-GONZÁLEZ S., VALERO F., SÁNCHEZ J.L., Gascón E., López L., García-Ortega E., Merino A. Numerical simulations of snowfall events: Sensitivity analysis of physical parameterizations. Journal of Geophysical Research Atmospheres. 120 (19), 155, 2015.
  • 22. WAYAND N.E., STIMBERIS J., ZAGRODNIK J.P., Mass C.F., Lundquist J.D. Improving simulations of precipitation phase and snowpack at a site subject to cold air intrusions, Snoqualmie Pass, WA. Journal of Geophysical Research Atmospheres. 121 (17), 2017.
  • 23. Sun C., Yang J., Chen Y., Li X., Yang Y., Zhang Y. Comparative study of streamflow components in two inland rivers in the Tianshan Mountains, northwest China. Environmental Earth Sciences. 75 (9), 1, 2016.
  • 24. Hu W.J., Liu H.L., Wang H., Zhao W.Y. Analysis of the terrain effect on snow cover accumulating and melting in Tianshan Mountains. Journal of Glaciology and Geocryology. 38 (5), 1227, 2016.
  • 25. TANG Z., WANG X., WANG J., Wang X., Li H., Jiang Z. Spatiotemporal variation of snow cover in Tianshan Mountains, Central Asia, based on cloud-free MODIS fractional snow cover product, 2001-2015. Remote Sensing. 9 (10), 1045, 2017.
  • 26. Sorg A., Bolch T., Stoffel M., Solomina O., Benistonet M. Climate change impacts on glaciers and runoff in TianShan (Central Asia). Nature Climate Change. 2 (10), 725, 2012.
  • 27. Zhang Z.Y., He X.L., Liu L., Li Z., Wang P. Spatial distribution of rainfall simulation and the cause analysis in China’s Tianshan Mountains area. Advances in Water Science. 26 (4), 500, 2015.
  • 28. Zhang X., LI X., Gao P., Qian L., Tang H. Separation of precipitation forms based on different methods in Tianshan Mountainous area, northwest China. Journal of Glaciology & Geocryology. 39 (2), 235, 2017.
  • 29. Hu R.J. Natural geography of Tianshan Mountain in China. Beijing, China Environmental Science Press, 2004.
  • 30. Wei F.Y. Statistical diagnosis and prediction technology of modern climate (Second Edition). Beijing, Meteorological Press. 37, 2007.
  • 31. Zhao G.J., Hormann G., Fohrer N., Zhang Z., Zhai J. Streamflow trends and climate variability impacts in Poyang Lake Basin, China. Water Resources Management. 24 (4), 689, 2010.
  • 32. Matti B., Dahlke H.E., Lyon S.W. On the variability of cold region flooding. Journal of hydrology. Volume 534, 669, 2016.
  • 33. Jones J.R., Schwartz J.S., Ellis K.N., Hathaway J.M., Jawdye C.M. Temporal variability of precipitation in the upper Tennessee Valley. Journal of Hydrology Regional Studies. Volume 3, 125, 2015.
  • 34. Froidurot S., Zin I., Hingray B., Gautheron A. Sensitivity of precipitation phase over the Swiss Alps to different meteorological variables. J. hydrometeor. 15 (2), 685, 2014.
  • 35. Koistinen J., Saltikoff E. Experience of customer products of accumulated snow, sleet and rain. In, Advanced weather radar systems, COST 75 Int. Seminar, Locarno. 397, 1998.
  • 36. LIU Y p., BAI H z., QIAN Z.g., YANG X., ZHANG L., DUAN H. Further analyses of obvious moistening in central Xinjiang in recent 20 years. Plateau Meteorology. 100 (5), 299, 2011.
  • 37. XIE P., GU Y.L., ZHANG H.C., Liu X. Precipitation and drought characteristics in Xinjiang during 1961-2015. Arid Land Geography. 40 (2), 332, 2017.
  • 38. Guo L., Li L. Variation of the proportion of precipitation occurring as snow in the Tian Shan Mountains, China. International Journal of Climatology. 35 (7), 1379, 2015.
  • 39. Zhong Y., Wang B., Zou C.B., Hu B.X., Liu Y., Hao Y. On the teleconnection patterns to precipitation in the eastern Tianshan Mountains, China. Climate Dynamics. 49 (9-10), 3123, 2017.
  • 40. Yao J.Q., Yang Q., Hu W.F. Characteristics analysis of water vapor contents around Tianshan Mountains and the relationships with climate factors. Scientia Geographica Sinica. 33 (7), 859, 2013.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-02f724e8-cb9c-4fae-9d4c-a490cae7d113
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.