Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 2 |

Tytuł artykułu

Effect of phytoplasma infection on metabolite content and antioxidant enzyme activity in lime (Citrus aurantifolia)

Warianty tytułu

Języki publikacji



The objective of the present work was to study biochemical alterations in lime plants infected by the Candidatus Phytoplasma aurantifoliae. Changes in antioxidant activities, content of chlorophylls (Chl), carotenoids (Car), soluble proteins, sugars and auxin (IAA) in infected plant were investigated. The activities of polyphenol oxidase (PPO), peroxidase (POX) and superoxide dismutase (SOD) were observed to be greater in infected leaves than the healthy control. Also according to nondenaturing PAGE, in infected leaves all the antioxidative enzymes isoforms were stronger than that of the healthy control. These results suggest that antioxidant enzymes can be activated in response to infection by phytoplasma. The decrease in content of proteins, total soluble and reducing sugars in infected plants point out changes in host metabolism due to the phytoplasma infection. The reduction in chlorophylls and auxin content shows that the phytoplasma can interfere in photosynthesis and induces senescence in the leaf. In conclusion, this study provides new insights into the lime response to phytoplasma infection.

Słowa kluczowe








Opis fizyczny



  • Department of Plant Sciences, School of Biology, College of Science, University of Tehran, 14155 Tehran, Iran
  • Department of Plant Sciences, School of Biology, College of Science, University of Tehran, 14155 Tehran, Iran
  • Department of Biology and Plant Protection, University of Udine, via delle Scienze 208, 33100 Udine, Italy
  • Engineering Research Institute, Sooliran street, 16 km Tehran-Karaj Old Road, Tehran, Iran


  • Abeles FB, Biles CL (1991) Characterization of peroxidase in lignifying peach fruit endocarp. Plant Physiol 95:269–273
  • Amor NB, Hamed KB, Debez A, Grignon C, Abdelly C (2005) Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci 168:889–899
  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and assay applicable to acrylamide gels. Anal Biochem 44:276–278
  • Bertamini M, Nedunchezhian N (2001) Effects of phytoplasma [stolbur-subgroup (Boin oir-BN)] on photosynthetic pigments, saccharides, ribulose 1, 5-biophosphate carboxylase, nitrate and nitrite reductases, and photosynthetic activities in field grown grapevine (vitis vinifera L. cv. Chardonnay) leaves. Photosynthetica 39:119–122
  • Bertamini M, Grando MS, Muthuchelian K, Nedunchezhian N (2002a) Effect of phytoplasmal infection on photosystem II efficiency and thylakoid membrane protein changes in field grown apple (Malus pumila) leaves. Physiol Mol Plant Pathol 61:349–356
  • Bertamini M, Nedunchezhian N, Tomasi F, Grando S (2002b) Phytoplasma [Stolbur subgroup (Bois Noir-BN)] infection inhibits photosynthetic pigments, ribulose-1, 5-biphosphate carboxylase and photosynthetic activities in field grown grapevine (Vitis vinifera L. cv. Chardonnay) leaves. Physiol Mol Plant Pathol 61:357–366
  • Bertamini M, Grando MS, Nedunchezhian N (2003/4) Effects of phytoplasma infection on pigments, chlorophyll-protein complex and photosynthetic activities in field grown apple leaves. Biol Plant 47:237–242
  • Borden S, Higgins VJ (2002) Hydrogen peroxide plays a critical role in the defense response of tomato to Cladoporicem fidvum. Physiol Mol Plant Pathol 61:227–236
  • Bové JM, Danet JL, Bananej K, Hassanzadeh N, Taghizadeh M, Salehi M, Garnier M (2000) Witches’ broom disease of lime in Iran. In: Proceedings of the fourteenth Conference of IOCV, Riverside, US, pp 207–212
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Chang CJ (1977) Histological investigation on phyllody in Catharanthus roseus. M.S. Thesis, University of Missouri
  • Chang CJ (1998) Pathogenicity of aster yellows phytoplasma and Spiroplasma citri on periwinkle. Phytopathology 88:1347–1350
  • Christensen NM, Axelsen KB, Nicolaisen M, Schulz A (2005) Phytoplasmas and their interactions with hosts. Trends Plant Sci 10(11):526–535
  • Davis BJ (1964) Disc electrophoresis. II. Method and application to human serumproteins.Ann NewYorkAcad Sci USA121:404–427
  • Davis RE (1995) Fitoplasmas: fitopatógenos procarióticos sem parede celular, habitantes de floema e transmitidos por artrópodes. Revisão Anual de Patologia de Plantas 3:1–27
  • Davis RE, Sinclair WA (1998) Phytoplasma identity and disease etiology. Phytopathology 88:1372–1376
  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Biochem 28:350–356
  • Eichelmann H, Laisk A (1999) Ribulose-1, 5-bisphosphate carboxylase/oxygenase content, assimilatory charge, and mesophyll conductance in leaves. Plant Physiol 119:179–189
  • Favali MA, di Toppi LS, Vestena C, Fossati F, Musetti R (2001) Phytoplasmas associated with tomato stolbur disease. Acta Hortic 551:93–99
  • Friedrich JW, Huffaker RC (1980) Photosynthesis, leaf resistances, and ribulose-1, 5-bisphosphate carboxylase degradation in senescing barley leaves. Plant Physiol 65:1103–1107
  • Garnier M, Zreik L, Bové JM (1991) Witches’ broom, a lethal mycoplasmal disease of lime in the Sultanate of Oman and the United Arab Emirates. Plant Dis 75:546–555
  • Gaspar T, Penel C, Thorpe T, Greppin H (1982) Peroxidases 1970–1980: a survey of their biochemical and physiological roles in higher plants. University of Geneva Press, Geneva
  • Ghosh DK, Das AK, Singh S, Singh SJ, Ahlawat YA (1999) Occurrence of witches’ broom, a new phytoplasma disease of acid lime (Citrus aurantifolia) in India. Plant Dis 83:302
  • Guthrie JN, Walsh KB, Scott PT, Rasmussen TS (2001) The phytopathology of Australian papaya dieback: a proposed role for the phytoplasma. Physiol Mol Plant Pathol 58:23–30
  • Ji XL, Gai YP, Zheng CC, Mu Z (2009) Comparative proteomic analysis provides new insights into mulberry dwarf responses in mulberry (Morus alba L.). Proteomics 9:5328–5339
  • Junqueira A, Bedendo I, Pascholati S (2004) Biochemical changes in corn plants infected by the maize bushy stunt phytoplasma. Physiol Mol Plant Pathol 65:181–185
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–765
  • Lee IM, Hammond RW, Davis RE, Gundersen DE (1993) Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasma like organisms. Phytopathology 83:834–842
  • Lepka P, Stitt M, Moll E, Seemuller E (1999) Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol Mol Plant Pathol 55:59–68
  • Levitt J (1980) Responses of plants to environmental stresses, vol. 2. Academic Press, New York
  • Lichtenthaler HK, Wellburn AR (1983) Determination of total carotenoids and chlorophyll a and b of leaf extract in different solvents. Biochem Soc Trans 11(3):591–602
  • Lin CC, Kao CH (2001) Cell wall peroxidase activity, hydrogen peroxide level and NaCl-inhibited root growth of rice seedlings. Plant Soil 230:135–143
  • Malik CP, Singh MB (1980) Plant enzymology and histoenzymology. Kalyani Publishers, New Delhi, pp 51–53
  • Maust BE, Espadas F, Talavera C, Aguilar M, Santamaría JM, Oropeza C (2003) Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma. Phytopathology 93:976–998
  • McCoy RE, Caudwell A, Chang CJ, Chen TA, Chiykowski LN, Cousin MT, Dale JL, de Leeuw GTN, Golino DA, Hackett KJ, Kirkpatrick BC, Marwitz R, Petzold H, Sinha RH, Sugiura M, Whitcomb RF, Yang IL, Zhu BM, Seemu¨ller E (1989) Plant diseases associated with mycoplasm alike organisms. In: Whitcomb RF, Tully JG (eds) The mycoplasmas, vol 5. Academic Press, New York, pp 545–560
  • Munns R, Rebetzke GJ, Husain S, James RA, Hare RA (2003) Genetic control of sodium extrusion in durum wheat. Austra J Agr Res 54:627–635
  • Musetti R (2009) Biochemical changes in plants infected by phytoplasmas. In: Weintraub PG, Jones P (eds) Phytoplasmas: genomes, plant hosts and vectors. CABI Publishing, Wallingford, pp 135–149
  • Musetti R, Marabottini R, Badiani M, Martini M, di Toppi LS, Borselli S, Borgo M, Osler R (2007) On the role of H₂O₂ in the recovery of grapevine (Vitis vinifra cv. Prosecco) from Flavescence doree disease. Funct Plant Biol 34:750–758
  • Nelson NA (1944) Photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380
  • Niknam V, Bagherzadeh M, Ebrahimzadeh H, Sokhansanj A (2004) Effect of NaCl on biomass and content of sugars, proline and proteins in seedlings and leaf explants of Nicotiana tabacum grown in vitro. Biol Plant 48:613–615
  • Oliveira E, Magalhães PC, Gomide RL, Vasconcelos CA, Souza IRP, Oliveira CM, Cruz I, Schaffert RE (2002) Growth and nutrition of mollicute infected maize. Plant Dis 86:945–949
  • Ray H, Douches DS, Hammerschmidt R (1998) Transformation of potato with cucumber peroxidase: expression and disease response. Physiol Mol Plant Pathol 53:93–103
  • Raymond J, Pakariyathan N, Azanza JL (1993) Purification and some properties of polyphenol oxidases from sunflowers seed. Phytochemistry 34:927–931
  • Seemu¨ller E, Marcone C, Laue U, Ragozzino A, Göschl M (1998) Current status of molecular classification of the phytoplasmas. J Plant Pathol 80:3–26
  • Stobart AK, Griffiths WH, Ameen-Bukhari I, Sherwood RP (1985) The effect of cadmium on the biosynthesis of leaves of barley. Physiol Plant 63:293–298
  • Torres E, Botti S, Paltrinieri S, Martin MP, Bertaccini A (2003) Caracterizació n molecular de los fitoplasmas del grupo Apple proliferation asociados a los síntomas de escoba de bruja en Retama. Bol San Veg Plagas 29:265–275
  • Torres MA, Jonathan DG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogen. Plant Physiol 141:373–378
  • Van Loon LC (1971) Tobacco polyphenol oxidase. A specific staining method indicating non-identify with peroxidase. Phytochemistry 10:503–507
  • Wendel JF, Weeden NF (1989) Visualization and interpretation of plant isozymes. In: Soltis DE, Soltis PS (eds) Isozyme in plant biology. Chapman and Hall, London, pp 5–45
  • Yu F (1997) Pigment content and in vitro culture of periwinkle infected with aster yellows phytoplasma or Spiroplasma citri. MS thesis, University of Georgia, Griffin


Rekord w opracowaniu

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.