PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 10 | 1 |

Tytuł artykułu

Validation of accelerometer for measuring physical activity in free-living individuals

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: The aim of this research was to validate a triaxial GT3X accelerometer against doubly labelled water for measuring total energy expenditure (TEE) in a study of free-living Dutch adults and to compare the two prediction equations used to calculate accelerometerderived activity related energy expenditure. Material/Methods: We used a measurement error model to estimate bias in the mean TEE, a correlation coefficient between measured and true TEE (a validity coefficient, which quantifies loss of statistical power to detect association) and the attenuation factor (which quantifies bias in the association), with and without conditioning on age, sex and BMI. We proposed a calibration method for the accelerometer-based TEE. Results: The accelerometer underestimated TEE by about 500kcal/day. The validity coefficient estimate conditional on age, sex and BMI was 0.8; the same value was observed for the attenuation factor estimate. With the devised calibration method, the bias in accelerometerderived mean TEE reduced to 6 kcal/day, validity coefficient estimate increased to 0.95 and attenuation factor to 0.94. Conclusions: The GT3X accelerometer would underestimate mean TEE, lead to minimal loss in statistical power to detect significant association, and would result in biased estimate of the association between TEE and a health outcome.

Słowa kluczowe

Twórcy

autor
  • Department of Biometrics, Wageningen University and Research, Wageningen, The Netherlands
  • Department of Internal Medicine, Yale University, New Haven, USA
  • Department of Biometrics, Wageningen University and Research, Wageningen, The Netherlands
  • Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
  • Dision of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
autor
  • Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
  • Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer, Lyon, France
  • Department of Biometrics, Wageningen University and Research, Wageningen, The Netherlands
  • Department of Biometrics, Wageningen University and Research, Wageningen, The Netherlands
  • Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
  • Department of Statistics, Mathematical Modelling and Data Logistics, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands

Bibliografia

  • [1] Plasqui G, Westerterp KR. Physical activity assessment with accelerometers: An evaluation against doubly labeled water. Obesity. 2007;15(10):2371-9. https://doi.org/10.1038/oby.2007.281
  • [2] WHO. Physical Activity. WHO. 2015. http://www.who.int/topics/physical_activity/en [Accessed March, 27 2015].
  • [3] Leinonen AM, Ahola R, Kulmala J, et al. Measuring physical activity in free-living conditions - Comparison of three accelerometry-based methods. Front Physiol. 2017;7. https://doi.org/10.3389/fphys.2016.00681
  • [4] Hills AP, Mokhtar N, Byrne NM. Assessment of physical activity and energy expenditure: An overview of objective measures. Front Nutr. 2014;1:5. https://doi.org/10.3389/fnut.2014.00005
  • [5] Plasqui G, Bonomi AG, Westerterp KR. Daily physical activity assessment with accelerometers: New insights and validation studies. Obes Rev. 2013;14(6):451-62. https://doi.org/10.1111/obr.12021
  • [6] Nusser SM, Beyler NK, Welk GJ, Carriquiry AL, Fuller WA, King BMN. Modeling errors in physical activity recall data. J Phys Act Health. 2012;9:S56-S67. https://doi.org/10.1123/jpah.9.s1.s56
  • [7] Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM. Measurement error in nonlinear models. New York: Chapman& Hall/CRC; 2006. https://doi.org/10.1201/9781420010138
  • [8] Ferrari P, Friedenreich C, Matthews CE. The role of measurement error in estimating levels of physical activity. Am J Epidemiol. 2007;166(7):832-40. https://doi.org/10.1093/aje/kwm148
  • [9] Tooze JA, Troiano RP, Carroll RJ, Moshfegh AJ, Freedman LS. A Measurement error model for physical activity level as measured by a questionnaire with application to the 19992006 NHANES Questionnaire. Am J Epidemiol. 2013;177(11):1199-208. https://doi.org/10.1093/aje/kws379
  • [10] Hallal PC, Reichert FF, Clark VL, et al. Energy expenditure compared to physical activity measured by accelerometry and self-report in adolescents: A validation study. PLoS One. 2013;8(11);e77036. https://doi.org/10.1371/journal.pone.0077036
  • [11] Van Remoortel H, Giavedoni S, Raste Y, et al. Validity of activity monitors in health and chronic disease: a systematic review. Int J Behav Nutr Phys Act. 2012;9:84. https://doi.org/10.1186/1479-5868-9-84
  • [12] Lyden K, Kozey SL, Staudenmeyer JW, Freedson PS. A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations. Eur J Appl Physiol. 2011;111(2):187-201. https://doi.org/10.1007/s00421-010-1639-8
  • [13] Leenders NYJM, Sherman WM, Nagaraja HN, Kien CL. Evaluation of methods to assess physical activity in free-living conditions. Medicine and Science in Sports and Exercise. 2001;33(7):1233-40. https://doi.org/10.1097/00005768-200107000-00024
  • [14] Trijsburg L, de Vries JHM, Boshuizen HC, et al. Comparison of duplicate portion and 24 h recall as reference methods for validating a FFQ using urinary markers as the estimate of true intake. Brit J Nutr. 2015;114(8):1304-12. https://doi.org/10.1017/S0007114515002871
  • [15] IAEA. Assessment of Body Composition and Total Energy Expenditure in Humans Using Stable Isotope Techniques. AEA Human Health Series No. 3. Vienna: International Atomic Energy Agency 2009.
  • [16] Chumlea WC, Guo SS, Kuczmarski RJ, et al. Body composition estimates from NHANES III bioelectrical impedance data. Int J Obesity. 2002;26(12):1596-609. https://doi.org/10.1038/sj.ijo.0802167
  • [17] Guidotti S, Jansen HG, Aerts-Bijma AT, Verstappen-Dumoulin BMAA, Van Dijk G, Meijer HAJ. Doubly Labelled Water analysis: Preparation, memory correction, calibration and quality assurance for δ2H and δ18O measurements over four orders of magnitudes. Rapid Communications in Mass Spectrometry. 2013;27(9):1055-66. https://doi.org/10.1002/rcm.6540
  • [18] Schoeller DA, Leitch CA, Brown C. Doubly Labeled Water Method - Invivo Oxygen and Hydrogen Isotope Fractionation. Am J Physiol. 1986;251(6):R1137-R43. https://doi.org/10.1152/ ajpregu.1986.251.6.R1137
  • [19] Weir JBD. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol-London. 1949;109(1-2):1-9. https://doi.org/10.1113/jphysiol.1949.sp004363
  • [20] What is the difference among the Energy Expenditure Algorithms?. https://actigraph.desk.com/customer/en/portal/articles/2515835-what-is-the-difference-among-the-energy-expenditurealgorithms-.Accessed November 8 2017.
  • [21] Freedson PS, Melanson E, Sirard J. Calibration of the computer science and applications, Inc. Accelerometer. Med Sci Sport Exerc. 1998;30(5):777-81. https://doi.org/10.1097/00005768-199805000-00021
  • [22] Sasaki JE, John D, Freedson PS. Validation and comparison of ActiGraph activity monitors. J Sci Med Sport. 2011;14(5):411-6. https://doi.org/10.1016/j.jsams.2011.04.003
  • [23] Neuhouser ML, Di C, Tinker LF, et al. Physical activity assessment: Biomarkers and self-report of activity-related energy expenditure in the WHI. Am J Epidemiol. 2013;177(6):576-85. https://doi. org/10.1093/aje/kws269
  • [24] Henry CJ. Basal metabolic rate studies in humans: measurement and development of new equations. Public Health Nutr. 2005;8(7A):1133-52. https://doi.org/10.1079/PHN2005801
  • [25] Kipnis V, Subar AF, Midthune D, et al. Structure of dietary measurement error: results of the OPEN biomarker study. Am J Epidemiol. 2003;158(1):14-21. https://doi.org/10.1093/aje/kwg091
  • [26] Kipnis V, Midthune D, Freedman LS, et al. Empirical evidence of correlated biases in dietary assessment instruments and its implications. Am J Epidemiol. 2001;153(4):394-403. https://doi. org/10.1093/aje/153.4.394
  • [27] Kipnis V, Subar AF, Midthune D, et al. Structure of dietary measurement error: results of the OPEN biomarker study. Am J Epidemiol. 2003;158(1):14-21; discussion 2-6. https://doi.org/10.1093/aje/kwg091
  • [28] Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307-10. https://doi.org/10.1016/S0140-6736(86)90837-8
  • [29] Lim S, Wyker B, Bartley K, Eisenhower D. Measurement error of self-reported physical activity levels in new york city: assessment and correction. Am J Epidemiol. 2015;181(9):648-55. https://doi.org/10.1093/aje/kwu470
  • [30] Krouwer JS. Why Bland-Altman plots should use X, not (Y+X)/2 when X is a reference method. Statistic Med. 2008;27(5):778-80. https://doi.org/10.1002/sim.3086
  • [31] Kipnis V, Freedman L, Brown C, Hartman A, Schatzkin A. Effect of measurement error on energyadjustment models in nutritional epidemiology. Am J Epidemiol. 1997;146(10):842-54. https://doi.org/10.1093/oxfordjournals.aje.a009202
  • [32] Swartz AM, Strath SJ, Bassett DR, O’Brien WL, King GA, Ainsworth BE. Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Med Sci Sport Exerc. 2000;32(9):S450-S6. https://doi.org/10.1097/00005768-200009001-00003
  • [33] Crouter SE, Churilla JR, Bassett DR, Jr. Estimating energy expenditure using accelerometers. Eur J Appl Physiol. 2006;98(6):601-12. https://doi.org/10.1007/s00421-006-0307-5

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-02541618-8a2d-447a-9454-4b2c68e765cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.