Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 83 | 4 |
Tytuł artykułu

Plastid origin: who, when and why?

Treść / Zawartość
Warianty tytułu
Języki publikacji
The origin of plastids is best explained by endosymbiotic theory, which dates back to the early 1900s. Three lines of evidence based on protein import machineries and molecular phylogenies of eukaryote (host) and cyanobacterial (endosymbiont) genes point to a single origin of primary plastids, a unique and important event that successfully transferred two photosystems and oxygenic photosynthesis from prokaryotes to eukaryotes. The nature of the cyanobacterial lineage from which plastids originated has been a topic of investigation. Recent studies have focused on the branching position of the plastid lineage in the phylogeny based on cyanobacterial core genes, that is, genes shared by all cyanobacteria and plastids. These studies have delivered conflicting results, however. In addition, the core genes represent only a very small portion of cyanobacterial genomes and may not be a good proxy for the rest of the ancestral plastid genome. Information in plant nuclear genomes, where most genes that entered the eukaryotic lineage through acquisition from the plastid ancestor reside, suggests that heterocyst-forming cyanobacteria in Stanier’s sections IV and V are most similar to the plastid ancestor in terms of gene complement and sequence conservation, which is in agreement with models suggesting an important role of nitrogen fixation in symbioses involving cyanobacteria. Plastid origin is an ancient event that involved a prokaryotic symbiont and a eukaryotic host, organisms with different histories and genome evolutionary processes. The different modes of genome evolution in prokaryotes and eukaryotes bear upon our interpretations of plastid phylogeny.
Opis fizyczny
  • Institute of Molecular Evolution, Heinrich-Heine-University Dusseldorf, Universitatsstr. 1, 40225 Dusseldorf, Germany
  • Institute of Molecular Evolution, Heinrich-Heine-University Dusseldorf, Universitatsstr. 1, 40225 Dusseldorf, Germany
  • Institute of Molecular Evolution, Heinrich-Heine-University Dusseldorf, Universitatsstr. 1, 40225 Dusseldorf, Germany
  • Institute of Molecular Evolution, Heinrich-Heine-University Dusseldorf, Universitatsstr. 1, 40225 Dusseldorf, Germany
  • Institute of Molecular Evolution, Heinrich-Heine-University Dusseldorf, Universitatsstr. 1, 40225 Dusseldorf, Germany
  • Institute of Molecular Evolution, Heinrich-Heine-University Dusseldorf, Universitatsstr. 1, 40225 Dusseldorf, Germany
  • 1. Allen JF. Photosynthesis of ATP – electrons, proton pumps, rotors, and poise. Cell. 2002;110(3):273–276.
  • 2. Hagelstein P, Sieve B, Klein M, Jans H, Schultz G. Leucine synthesis in chloroplasts: leucine/isoleucine aminotransferase and valineaminotransferase are different enzymes in spinach chloroplasts.J Plant Physiol. 1997;150(1–2):23–30.
  • 3. Zrenner R, Stitt M, Sonnewald U, Boldt R. Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev PlantBiol. 2006;57(1):805–836.
  • 4. Wang Z, Benning C. Chloroplast lipid synthesis and lipid trafficking through ER–plastid membrane contact sites. Biochem Soc Trans.2012;40(2):457–463.
  • 5. Gerdes S, Lerma-Ortiz C, Frelin O, Seaver SMD, Henry CS, de Crecy- Lagard V, et al. Plant B vitamin pathways and their compartmentation:a guide for the perplexed. J Exp Bot. 2012;63(15):5379–5395.
  • 6. Mereschkowsky C. Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Cent. 1905;25(18):593–604.
  • 7. Martin W, Kowallik K. Annotated English translation of Mereschkowsky’s 1905 paper “Über Natur und Ursprung der ChromatophorenimPflanzenreiche.” Eur J Phycol. 1999;34(3):287–295.
  • 8. Sagan L. On the origin of mitosing cells. J Theor Biol. 1967;14(3):225– 274.
  • 9. Margulis L. Origin of eukaryotic cells. New Haven, CT: Yale University Press; 1970.
  • 10. Wallin IE. Symbionticism and the origin of species. London: Tindall and Cox; 1927.
  • 11. Sapp J. Evolution by association: a history of symbiosis. New York, NY: Oxford University Press; 1994.
  • 12. Williams TA, Foster PG, Cox CJ, Embley TM. An archaeal origin of eukaryotes supports only two primary domains of life. Nature.2013;504(7479):231–236.
  • 13. Raff RA, Mahler HR. The non symbiotic origin of mitochondria. Science. 1972;177(4049):575–582.
  • 14. Bogorad L. Evolution of organelles and eukaryotic genomes. Science. 1975;188(4191):891–898.
  • 15. Cavalier-Smith T. The origin of nuclei and of eukaryotic cells. Nature. 1975;256(5517):463–468.
  • 16. Gray MW, Doolittle WF. Has the endosymbiont hypothesis been proven? Microbiol Rev. 1982;46(1):1–42.
  • 17. Raven PH. A multiple origin for plastids and mitochondria: many independent symbiotic events may have been involved in the originof these cellular organelles. Science. 1970;169(3946):641–646.
  • 18. Howe CJ, Barbrook AC, Nisbet RER, Lockhart PJ, Larkum AWD. The origin of plastids. Philos Trans R Soc Lond B Biol Sci. 2008;363(1504):2675–2685.
  • 19. Stiller JW. Toward an empirical framework for interpreting plastid evolution. J Phycol. 2014;50(3):462–471.
  • 20. Zimorski V, Ku C, Martin WF, Gould SB. Endosymbiotic theory for organelle origins. Curr Opin Microbiol. 2014;22:38–48.
  • 21. Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, et al. The new higher level classification of eukaryotes with emphasison the taxonomy of protists. J Eukaryot Microbiol. 2005;52(5):399–451.
  • 22. McFadden GI, van Dooren GG. Evolution: red algal genome affirms a common origin of all plastids. Curr Biol. 2004;14(13):R514–R516.
  • 23. Steiner JM, Yusa F, Pompe JA, Löffelhardt W. Homologous protein import machineries in chloroplasts and cyanelles. Plant J. 2005;44(4):646–652.
  • 24. Shi LX, Theg SM. The chloroplast protein import system: from algae to trees. Biochim Biophys Acta. 2013;1833(2):314–331.
  • 25. Martin W, Brinkmann H, Savonna C, Cerff R. Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci USA. 1993;90(18):8692–8696.
  • 26. Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat RevGenet. 2004;5(2):123–135.
  • 27. Gould SB, Waller RF, McFadden GI. Plastid evolution. Annu Rev Plant Biol. 2008;59(1):491–517.
  • 28. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplastgenomes reveals plastid phylogeny and thousands of cyanobacterialgenes in the nucleus. Proc Natl Acad Sci USA. 2002;99(19):12246–12251.
  • 29. Rodríguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Löffelhardt W, et al. Monophyly of primary photosynthetic eukaryotes:green plants, red algae, and glaucophytes. Curr Biol. 2005;15(14):1325–1330.
  • 30. Criscuolo A, Gribaldo S. Large-scale phylogenomic analyses indicate a deep origin of primary plastids within cyanobacteria. Mol Biol Evol.2011;28(11):3019–3032.
  • 31. Schirrmeister BE, Antonelli A, Bagheri HC. The origin of multicellularity in cyanobacteria. BMC Evol Biol. 2011;11(1):45.
  • 32. Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, et al. Improving the coverage of the cyanobacterial phylum using diversity-drivengenome sequencing. Proc Natl Acad Sci USA. 2013;110(3):1053–1058.
  • 33. Li B, Lopes JS, Foster PG, Embley TM, Cox CJ. Compositional biases among synonymous substitutions cause conflict between gene andprotein trees for plastid origins. Mol Biol Evol. 2014;31(7):1697–1709.
  • 34. Ochoa de Alda JAG, Esteban R, Diago ML, Houmard J. The plastid ancestor originated among one of the major cyanobacterial lineages.Nat Commun. 2014;5:4937.
  • 35. Katz LA, Grant JR, Parfrey LW, Burleigh JG. Turning the crown upside down: gene tree parsimony roots the eukaryotic tree of life. Syst Biol.2012;61(4):653–660.
  • 36. Jackson CJ, Reyes-Prieto A. The mitochondrial genomes of the glaucophytes Gloeochaete wittrockiana and Cyanoptyche gloeocystis:multilocus phylogenetics suggests a monophyletic archaeplastida.Genome Biol Evol. 2014;6(10):2774–2785.
  • 37. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Generic assignments, strain histories and properties of pure culturesof cyanobacteria. J Gen Microbiol. 1979;111(1):1–61.
  • 38. Falcón LI, Magallón S, Castillo A. Dating the cyanobacterial ancestor of the chloroplast. ISME J. 2010;4(6):777–783. http://dx.doi. org/10.1038/ismej.2010.2
  • 39. Dagan T, Roettger M, Stucken K, Landan G, Koch R, Major P, et al. Genomes of stigonematalean cyanobacteria (subsection V) and theevolution of oxygenic photosynthesis from prokaryotes to plastids.Genome Biol Evol. 2013;5(1):31–44.
  • 40. Mareš J, Hrouzek P, Kaňa R, Ventura S, Strunecký O, Komárek J. The primitive thylakoid-less cyanobacterium Gloeobacter is a commonrock-dwelling organism. PLoS ONE. 2013;8(6):e66323.
  • 41. Schirrmeister BE, de Vos JM, Antonelli A, Bagheri HC. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proc Natl Acad Sci USA. 2013;110(5):1791–1796.
  • 42. Sánchez-Baracaldo P, Ridgwell A, Raven JA. A neoproterozoic transition in the marine nitrogen cycle. Curr Biol. 2014;24(6):652–657.
  • 43. Soo RM, Skennerton CT, Sekiguchi Y, Imelfort M, Paech SJ, Dennis PG, et al. An expanded genomic representation of the phylum Cyanobacteria.Genome Biol Evol. 2014;6(5):1031–1045.
  • 44. Mareš J, Komárek J, Compère P, Oren A. Validation of the generic name Gloeobacter Rippka et al. 1974, Cyanophyceae. Cryptogam Algol. 2013;34(3):255–262.
  • 45. Deschamps P, Colleoni C, Nakamura Y, Suzuki E, Putaux JL, Buleon A, et al. Metabolic symbiosis and the birth of the plant kingdom. Mol BiolEvol. 2008;25(3):536–548.
  • 46. Deusch O, Landan G, Roettger M, Gruenheit N, Kowallik KV, Allen JF, et al. Genes of cyanobacterial origin in plant nuclear genomes point toa heterocyst-forming plastid ancestor. Mol Biol Evol. 2008;25(4):748–761.
  • 47. Nelissen B, van de Peer Y, Wilmotte A, de Wachter R. An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol. 1995;12(6):1166–1173.
  • 48. Knoll AH. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb Perspect Biol. 2014;6(1):a016121.
  • 49. Butterfield NJ. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoicradiation of eukaryotes. Paleobiology. 2000;26(3):386–404.<0386:BPNGNS>2.0.CO;2
  • 50. Yoon HS. A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol. 2004;21(5):809–818.
  • 51. Parfrey LW, Lahr DJG, Knoll AH, Katz LA. Estimating the timing of early eukaryotic diversification with multigene molecular clocks.Proc Natl Acad Sci USA. 2011;108(33):13624–13629.
  • 52. Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik KV. Gene transfer to the nucleus and the evolution of chloroplasts. Nature. 1998;393(6681):162–165.
  • 53. Lockhart PJ, Howe CJ, Barbrook AC, Larkum AWD, Penny D. Spectral analysis, systematic bias, and the evolution of chloroplasts. Mol BiolEvol. 1999;16(4):573.
  • 54. Petersen J, Brinkmann H, Bunk B, Michael V, Päuker O, Pradella S. Think pink: photosynthesis, plasmids and the Roseobacter clade:plasmids and phototrophy. Environ Microbiol. 2012;14(10):2661–2672.
  • 55. Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P, Krauß N. A common ancestor for oxygenic and anoxygenic photosyntheticsystems. J Mol Biol. 1998;280(2):297–314.
  • 56. Sadekar S. Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core. Mol Biol Evol. 2006;23(11):2001–2007. molbev/msl079
  • 57. Allen JF. A redox switch hypothesis for the origin of two light reactions in photosynthesis. FEBS Lett. 2005;579(5):963–968.
  • 58. Olson JM, Blankenship RE. Thinking about the evolution of photosynthesis. Photosynth Res. 2004;80(1–3):373–386.
  • 59. Sousa FL, Shavit-Grievink L, Allen JF, Martin WF. Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, notphotosystem merger, at the origin of oxygenic photosynthesis. GenomeBiol Evol. 2013;5(1):200–216.
  • 60. Blankenship RE. Molecular evidence for the evolution of photosynthesis. Trends Plant Sci. 2001;6(1):4–6. S1360-1385(00)01831-8
  • 61. Hohmann-Marriott MF, Blankenship RE. Evolution of photosynthesis. Annu Rev Plant Biol. 2011;62(1):515–548.
  • 62. Oren A, Padan E. Induction of anaerobic, photoautotrophic growth in the cyanobacterium Oscillatoria limnetica. J Bacteriol.1978;133(2):558–563.
  • 63. Blankenship RE, Hartman H. The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci. 1998;23(3):94–97.
  • 64. Raymond J, Blankenship R. The origin of the oxygen-evolving complex. Coord Chem Rev. 2008;252(3–4):377–383.
  • 65. Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A. The origin of atmospheric oxygen on Earth: theinnovation of oxygenic photosynthesis. Proc Natl Acad Sci USA.2001;98(5):2170–2175.
  • 66. Sauer K, Yachandra VK. A possible evolutionary origin for the Mn4 cluster of the photosynthetic water oxidation complex from natural MnO2 precipitates in the early ocean. Proc Natl Acad Sci USA. 2002;99(13):8631–8636.
  • 67. Allen JF, Martin W. Evolutionary biology: out of thin air. Nature. 2007;445(7128):610–612.
  • 68. Hakala M. Photoinhibition of manganese enzymes: insights into the mechanism of photosystem II photoinhibition. J Exp Bot.2006;57(8):1809–1816.
  • 69. Kupitz C, Basu S, Grotjohann I, Fromme R, Zatsepin NA, Rendek KN, et al. Serial time-resolved crystallography of photosystem II using afemtosecond X-ray laser. Nature. 2014;513(7517):261–265.
  • 70. Johnson JE, Webb SM, Thomas K, Ono S, Kirschvink JL, Fischer WW. Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc Natl Acad Sci USA. 2013;110(28):11238–11243. http://dx.doi. org/10.1073/pnas.1305530110
  • 71. Khorobrykh A, Dasgupta J, Kolling DRJ, Terentyev V, Klimov VV, Dismukes GC. Evolutionary origins of the photosynthetic water oxidationcluster: bicarbonate permits Mn2+ photo-oxidation by anoxygenicbacterial reaction centers. Chembiochem. 2013;14(14):1725–1731.
  • 72. Allen JP, Olson TL, Oyala P, Lee WJ, Tufts AA, Williams JC. Lightdriven oxygen production from superoxide by Mn-binding bacterialreaction centers. Proc Natl Acad Sci USA. 2012;109(7):2314–2318.
  • 73. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature. 2003;424(6952):1042–1047.
  • 74. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405(6784):299–304.
  • 75. Dagan T, Artzy-Randrup Y, Martin W. Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci USA. 2008;105(29):10039–10044.
  • 76. Doolittle WF. Phylogenetic classification and the universal tree. Science. 1999;284(5423):2124–2128. science.284.5423.2124
  • 77. Doolittle WF, Bapteste E. Pattern pluralism and the Tree of Life hypothesis. Proc Natl Acad Sci USA. 2007;104(7):2043–2049. http://
  • 78. Paul S, Dutta A, Bag SK, Das S, Dutta C. Distinct, ecotype-specific genome and proteome signatures in the marine cyanobacteria Prochlorococcus. BMC Genomics. 2010;11(1):103.
  • 79. Thiergart T, Landan G, Schenk M, Dagan T, Martin WF. An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biol Evol. 2012;4(4):466–485.
  • 80. Martin W, Müller M. The hydrogen hypothesis for the first eukaryote. Nature. 1998;392(6671):37–41.
  • 81. McInerney JO, O’Connell MJ, Pisani D. The hybrid nature of the eukaryota and a consilient view of life on Earth. Nat Rev Microbiol.2014;12(6):449–455.
  • 82. Williams TA, Embley TM. Archaeal “dark matter” and the origin of eukaryotes. Genome Biol Evol. 2014;6(3):474–481. http://dx.doi. org/10.1093/gbe/evu031
  • 83. Holland HD. The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci. 2006;361(1470):903–915.
  • 84. Johnston DT, Wolfe-Simon F, Pearson A, Knoll AH. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’smiddle age. Proc Natl Acad Sci USA. 2009;106(40):16925–16929.
  • 85. Kasting J. Earth’s early atmosphere. Science. 1993;259(5097):920–926.
  • 86. Rai AN, Söderbäck E, Bergman B. Cyanobacterium-plant symbioses. New Phytol. 2000;147(3):449–481. http://dx.doi. org/10.1046/j.1469-8137.2000.00720.x
  • 87. Rikkinen J. Lichen guilds share related cyanobacterial symbionts. Science. 2002;297(5580):357–357.
  • 88. Prechtl J. Intracellular spheroid bodies of Rhopalodia gibba have nitrogen-fixing apparatus of cyanobacterial origin. Mol Biol Evol. 2004;21(8):1477–1481.
  • 89. Ran L, Larsson J, Vigil-Stenman T, Nylander JAA, Ininbergs K, Zheng WW, et al. Genome erosion in a nitrogen-fixing verticallytransmitted endosymbiotic multicellular cyanobacterium. PLoS ONE.2010;5(7):e11486.
  • 90. Chiu WL. Nitrogen deprivation stimulates symbiotic gland development in Gunnera manicata. Plant Physiol. 2005;139(1):224–230. http://
  • 91. Rai AN, Bergman B, Rasmussen U, editors. Cyanobacteria in symbiosis. Dordrecht: Kluwer Academic Publishers; 2002.
  • 92. Costa JL, Romero EM, Lindblad P. Sequence based data supports a single Nostoc strain in individual coralloid roots of cycads. FEMSMicrobiol Ecol. 2004;49(3):481–487.
  • 93. Allen JF, Raven JA. Free-radical-induced mutation vs redox regulation: costs and benefits of genes in organelles. J Mol Evol. 1996;42(5):482–492.
  • 94. Kneip C, Lockhart P, Voß C, Maier UG. Nitrogen fixation in eukaryotes – new models for symbiosis. BMC Evol Biol. 2007;7(1):55.
  • 95. Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s biogeochemical cycles. Science. 2008;320(5879):1034–1039.
  • 96. Usher KM, Bergman B, Raven JA. Exploring cyanobacterial mutualisms. Annu Rev Ecol Evol Syst. 2007;38(1):255–273.
  • 97. Facchinelli F, Colleoni C, Ball SG, Weber APM. Chlamydia, cyanobiont, or host: who was on top in the ménage à trois? Trends Plant Sci.2013;18(12):673–679.
  • 98. Salzberg SL. Microbial genes in the human genome: lateral transfer or gene loss? Science. 2001;292(5523):1903–1906.
  • 99. Rumpho ME, Worful JM, Lee J, Kannan K, Tyler MS, Bhattacharya D, et al. Horizontal gene transfer of the algal nuclear gene psbOto the photosynthetic sea slug Elysia chlorotica. Proc Natl AcadSci USA. 2008;105(46):17867–17871.
  • 100. Wagele H, Deusch O, Handeler K, Martin R, Schmitt V, Christa G, et al. Transcriptomic evidence that longevity of acquired plastids inthe photosynthetic slugs Elysia timida and Plakobranchus ocellatusdoes not entail lateral transfer of algal nuclear genes. Mol Biol Evol.2011;28(1):699–706.
  • 101. de Vries J, Christa G, Gould SB. Plastid survival in the cytosol of animal cells. Trends Plant Sci. 2014;19(6):347–350.
  • 102. Hannaert V, Saavedra E, Duffieux F, Szikora JP, Rigden DJ, Michels PAM, et al. Plant-like traits associated with metabolism of Trypanosomaparasites. Proc Natl Acad Sci USA. 2003;100(3):1067–1071.
  • 103. Martin W, Borst P. Secondary loss of chloroplasts in trypanosomes. Proc Natl Acad Sci USA. 2003;100(3):765–767.
  • 104. Berriman M. The genome of the African trypanosome Trypanosoma brucei. Science. 2005;309(5733):416–422. science.1112642
  • 105. Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, et al. Macronuclear genome sequence of the ciliate Tetrahymenathermophila, a model eukaryote. PLoS Biol. 2006;4(9):e286.
  • 106. Moreira D, Deschamps P. What was the real contribution of endosymbionts to the eukaryotic nucleus? Insights from photosynthetic eukaryotes. Cold Spring Harb Perspect Biol. 2014;6(7):a016014. http://
  • 107. Martin W. Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. Bioessays. 1999;21(2):99–104.<99::AID-BIES3>3.0.CO;2-B
  • 108. Esser C, Martin W, Dagan T. The origin of mitochondria in light of a fluid prokaryotic chromosome model. Biol Lett. 2007;3(2):180–184.
  • 109. Richards TA, Archibald JM. Cell evolution: gene transfer agents and the origin of mitochondria. Curr Biol. 2011;21(3):R112–R114.
  • 110. Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, et al. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature. 1997;387(6632):493–497.
  • 111. Esser C. A genome phylogeny for mitochondria among alphaproteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol Biol Evol. 2004;21(9):1643–1660.
  • 112. Thiergart T, Landan G, Martin WF. Concatenated alignments and the case of the disappearing tree. BMC Evol Biol. 2015 (in press).
  • 113. Pisani D, Cotton JA, McInerney JO. Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol Biol Evol. 2007;24(8):1752– 1760.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.