Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 02 | 1 |

Tytuł artykułu

An experimantal approach to verifying prognoses of floods using unmanned aerial vehicle

Warianty tytułu

Języki publikacji



The Department of Geoinformatics and Cartography of the University of Wrocław, Poland, is host institution of a project, financed by the National Science Centre in Poland, whose objective is to predict riverflow in real-time. If inundation is predicted, the problem of the verification of the overbank flow prognosis arises. This verification can be attained by utilizing an unmanned aerial vehicle that may be used for remote sensing applications. The unmanned aerial vehicle in question can take sequential photos with the unprecedented resolution of 3 cm/pix. Both the resolution and the opportunity for frequent flights – due to the low cost of the entire operation – allow us to compare prediction maps showing the forecasted overbank flow during an extreme hydrological event with the true observation obtained from the air. Although such verification is site- and event-specific, it can provide us with an objective technique for checking our system in a spatial domain. The main part of the system, known as HydroProg, produces multimodel ensemble hydrograph predictions and compares single-model prognoses; visualizations of them are then published in a web map service. The spatial predictions, along with the aerial orthophoto images, will also be presented online so that the user is able to observe the functioning of the system. Regular research flights have been carried out in Kłodzko County since 2012. The study areas correspond to sites where our Partner, the County Office in Kłodzko (SW Poland) – owner of the Local System for Flood Monitoring in Kłodzko County – has automatic gauges, and thus spatially reflect the hydrologic observation network. The aforementioned aerial module is experimental and will be incorporated into the entire system.








Opis fizyczny



  • Department of Geoinformatics and Cartography, Faculty of Earth and Environmental Management, University of Wroclaw, Plac Uniwersytecki 1, 50-137 Wroclaw, Poland
  • Department of Geoinformatics and Cartography, Faculty of Earth and Environmental Management, University of Wroclaw, Plac Uniwersytecki 1, 50-137 Wroclaw, Poland
  • Department of Geoinformatics and Cartography, Faculty of Earth and Environmental Management, University of Wroclaw, Plac Uniwersytecki 1, 50-137 Wroclaw, Poland


  • Bates P.D., 2004, Remote sensing and flood inundation modelling, Hydrological Processes 18 (13), 2593-2597. DOI: 10.1002/hyp.5649
  • Bates P.D, De Roo A.P.J., 2000, A simple raster-based model for flood inundation simulation, Journal of Hydrology, 236 (1-2), 54-77
  • Bryson M., Reid A., Ramos F., Sukkarieh S., 2010, Airborne vision-based mapping and classification of large farmland environments, Journal of Field Robotics, 27 (5), 632-655, DOI: 10.1002/rob.20343
  • Butts M., Dubicki A., Strońska K., Jørgensen G., Nalberczyński A., Lewandowski A., Van Kalken T., 2007, Flood forecasting for the upper and middle Odra River basin, [in:] Flood Risk Management in Europe, S. Begum, M.J.F. Stive, J.W. Hall (eds.), Springer, 353-384
  • Chiabrando F., Nex F., Piatti D., Rinaudo F., 2011, UAV and RPV systems for photogrammetric surveys in archaeological areas: two tests in the Piedmont region (Italy), Journal of Archaeological Science, 38 (3), 697-710, DOI: 10.1016/j.jas.2010.10.022
  • Cloke H.L., Pappenberger F., 2009, Ensemble flood forecasting: A review, Journal of Hydrology, 375 (3), 613-626
  • Dandois J.P., Ellis E.C., 2010, Remote sensing of vegetation structure using computer vision, Remote Sensing, 2 (4), 1157-1176, DOI: 10.3390/rs2041157
  • Dubicki A., Radczuk L., Adynkiewicz-Piragas M., Tokarczyk T., Mordalska H., Maciejowska B., Lisowski J., Bogusz A., Krzyścin K., 2005, Wody powierzchniowe, [in:] Opracowanie ekofizjograficzne dla województwa dolnośląskiego z załącznikami, Wojewódzkie Biuro Urbanistyczne we Wrocławiu, 79-92
  • Eisenbeiss H., Lambers K., Sauerbier M., 2007, Photogrammetric recording of the archaeological site of Pinchango Alto (Palpa, Peru) using a mini helicopter (UAV), [in:] Proceedings of the 33rd CAA Conference, Tomar, Portugal, A. Figueiredo (ed.), 175-184
  • Franz K., Ajami N., Schaake J., Buizza R., 2005, Hydrologic ensemble prediction experiment focuses on reliable forecasts, Eos, 86 (25), 239, DOI: 10.1029/2005EO250004
  • Grenzdörfer G.J., Guretzki M., Friedlander I., 2008, Photogrammetric image acquisition and image analysis of oblique imagery, Photogrammetric Record, 23(124), 372-386
  • Horritt M.S., Bates P.D., 2002, Evaluation of 1D and 2D numerical models for predicting river flood inundation, Journal of Hydrology, 268 (1-4), 87-99
  • Kasprzak M., Migoń P., 2010, Prognozowanie geomorfologicz-nych skutków wezbrań i powodzi, [in:] Wyjątkowe zdarzenia przyrodnicze na Dolnym Śląsku i ich skutki, P. Migoń (ed.), Rozprawy Naukowe Instytutu Geografii i Rozwoju Regionalnego Uniwersytetu Wrocławskiego, 14, 269-290
  • Küng O., Strecha C., Beyeler A., Zufferey J.C., Floreano D., Fua P., Gervaix F., 2011, The accuracy of automatic photogrammetric techniques on ultra-light UAV imagery, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-1/C2, 125-130
  • Larsson S., Nilsson C., 2005, A remote sensing methodology to assess the costs of preparing abandoned farmland for energy crop cultivation in northern Sweden, Biomass and Bioenergy, 28, 1-6
  • Marcus W.A., Fonstad M.A., 2008, Optical remote mapping of rivers at sub-meter resolution and watershed extents, Earth Surface Processes and Landforms, 33 (1), 4-24, DOI: 10.1002/esp.1637
  • Merwade V., Cook A., Coonrod J., 2008, GIS techniques for creating river terrain models for hydrodynamic modelling and flood inundation mapping, Environmental Modelling & Software, 23 (10-11), 1300-1311
  • Mikuni A.M., 1996, Digital Orthophoto Production, [in:] Digital Photogrammetry – An Addendum to the Manual of Photogrammetry, C. Greve (ed.), Bethesda, MD: American Society of Photogrammetry
  • Nielsen M.O., 2004, True orthophoto generation (Masters Thesis)
  • Niethammer U., James M.R., Rothmund S., Travelletti J., Joswig M., 2012, UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results, Engineering Geology, 128 (1), 2-11, DOI: 10.1016/j.enggeo. 2011.03.012
  • Paine D., Kiser J., 2003, Aerial Photography and Image Interpretation, 2nd ed. John Wiley & Sons Inc., Hoboken, New Jersey
  • Przybilla H.J., Wester-Ebbinghaus W., 1979, Bildflug mit ferngelenktem Kleinflugzeug. Bildmessung und Luftbildwesen, Zeitschrift fuer Photogrammetrie und Fernerkundung, 47, 137-14
  • Sanders B.F., 2007, Evaluation of on-line DEMs for flood inundation modelling, Advances in Water Resources, 30, 1831-1843, DOI: 10.1016/j.advwatres.2007.02.005
  • Schaake J., Franz K., Bradley A., Buizza R., 2006, The Hydrologic Ensemble Prediction EXperiment (HEPEX), Hydro-logy and Earth System Sciences Discussions, 3, 3321-3332, DOI: 10.5194/hessd-3-3321-2006
  • Schumann G., Matgen P., Cutler M.E.J., Black A., Hoffmann L., Pfister L., 2008, Comparison of remotely sensed water stagesfrom LiDAR, topographic contours and SRTM, ISPRS Journal of Photogrammetry and Remote Sensing, 63 (3), 283-296
  • Shaw E.M., Beven K.J., Chappell N.A., Lamb R., 2011, Hydro-logy in Practice, Fourth Edition, Spon, London
  • Slama C. (ed.), 1980, Manual of Photogrammetry, American Society of Photogrammetry, Falls Church, VA
  • Somodi I., Carni A., Ribeiro D., Podobnikar T., 2012, Recognition of the invasive species Robinia pseudacacia from combined remote sensing and GIS sources, Biological Conservation, 150 (1), 59-67, DOI: 10.1016/j.biocon.2012.02.014
  • Tarboton D.G., Bras R.L., Rodriguez-Iturbe I., 2006, On the extraction of channel networks from digital elevation data, Hydrological Processes, Special Issue: Digital Terrain Modelling in Hydrology, 5 (1), 81-100, DOI: 10.1002/hyp.3360050107
  • Turner D., Lucieer A., Watson C., 2012, An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds, Remote Sen-sing, 4 (5), 1392-1410, DOI: 10.3390/rs4051392
  • Vallet J., Panissod F., Strecha C., Tracol M., 2011, Photogrammetric Performance of an Ultra Light Weight swinglet “UAV”, International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g), 14-16 September, Zurich, Switzerland, SPRS Archives, XXXVIII-1/C22, 253-258
  • Vassilopoulou S., Hurni L., Dietrich V., Baltsavias E., Pateraki M., Lagios E., Parcharidis I., 2002, Orthophoto generation using IKONOS imagery and high-resolution DEM: a case study on volcanic hazard monitoring of Nisyros Island (Greece), ISPRS Journal of Photogrammetry and Remote Sensing, 57 (1), 24-38, DOI: 10.1016/S0924-2716(02)00126-0
  • Verhoeven G., Doneus M., Briese C., Vermeulen F., 2012, Mapping by matching – A computer vision-based approach to fast and accurate georeferencing of archaeological aerial photographs, Journal of Archaeological Science, 39, 2060-2070
  • Wolf P.R., Dewitt B.A., 2000, Elements of Photogrammetry with Applications in GIS, 3rd ed., McGraw-Hill, New York
  • Zappa M., Rotach M.W., Arpagaus M., Dorninger M., Hegg C., Montani A., Ranzi R., Ament F., Germann U., Grossi G., Jaun S., Rossa A., Vogt S., Walser A., Wehrhahn J., Wunram C., 2008, MAP D-PHASE: real-time demonstration of hydrological ensemble prediction systems, Atmospheric Science Letters, 9, 80-87

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.