PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 48 | 2 |

Tytuł artykułu

Consequences of experimental changes in the rearing conditions of Blue Tit Cyanistes caeruleus and Great Tit Parus major nestlings

Warianty tytułu

PL
Skutki eksperymentalnych zmian w środowisku rozwoju dla piskląt sikory modrej i bogatki

Języki publikacji

EN

Abstrakty

EN
Physiological functions of growing nestlings are thought to be traded-off in relation to rearing conditions, with the resulting physiological state of fledglings having important long-lasting consequences for their fitness. By manipulating brood size up and down, and, separately, by supplying additional food (mealworms — larvae of Tenebrio molitor) we tested if alterations of the rearing conditions would influence nestling performance in Blue Tits Cyanistes caeruleus and Great Tits Parus major. Brood size manipulation affected body mass, heterophil-to-lymphocyte ratio (H:L) and fledging probability in both species and the level of triglycerides in nestling Great Tits. Extra food supply influenced only fledging probability, with no other effect on indicators of nestling performance. An effect on nestling body mass and a lack of effect on cell-mediated immune response in the brood-size experiment suggest that nestlings in enlarged broods sacrificed growth to maintain immunity. In general, effects of both types of experiments were probably to some extent masked by specific character of the study site — an urban parkland with high human-induced disturbance.
PL
Różne funkcje fizjologiczne rosnących piskląt są wzajemnie powiązane w zintegrowany system, w którym istnieją sprzężenia kompromisowe wyrażające się różnym nasileniem w zależności od warunków, w jakich zachodzi rozwój. Kształtujący się ostatecznie stan fizjologiczny podlotów ma długoterminowe konsekwencje dla dostosowania osobniczego. W pracy podjęliśmy próbę testowania wpływu, jaki na różne wskaźniki kondycji piskląt sikor modrych i bogatek mają eksperymentalne zmiany warunków ich wzrostu. Manipulacje polegały na zmianie liczby piskląt w gnieździe i, osobno, na dostarczaniu dodatkowego pokarmu dostępnego dla karmiących osobników dorosłych (larwy Tenebrio molitor). Manipulacja liczbą piskląt powodowała polepszenie warunków wzrostu w lęgach pomniejszonych o 2 pisklęta, pogorszenie warunków w lęgach powiększonych o 2 pisklęta i stan neutralny w lęgach kontrolnych. Dostarczanie dodatkowego pokarmu w założeniu miało ułatwiać osobnikom rodzicielskim przejście przez bardzo wymagający okres karmienia. W obu eksperymentach badanymi zmiennymi zależnymi były różne cechy 13-14- dniowych piskląt: masa ciała, stężenia hemoglobiny, glukozy i trój glicerydów w krwi, opuchlizna patagium wywołana nastrzyknięciem fitohemaglutyniną, hematokryt, stosunek liczby heterofili do limfocytów oraz sukces lęgowy. Manipulacja liczbą piskląt wywierała istotny wpływ na masę ciała, stosunek heterofili do limfocytów i sukces wylotu u obu gatunków oraz na stężenie trój glicerydów u piskląt bogatki (Fig. 1, Tab. 1). Dodatkowy pokarm wpłynął jedynie na sukces wylotu piskląt (Tab. 2). Wyniki wskazują, że zmiany warunków wychowywania piskląt powodują pewne zmiany we wskaźnikach kondycji piskląt, ale w odniesieniu do cech fizjologicznych, zmiany te nie są konsekwentne. Wskazuje to na ogromne znaczenie ogólnego kontekstu ekologicznego eksperymentów, który może się w wielkim stopniu różnić między latami.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

48

Numer

2

Opis fizyczny

p.129-139,fig.,ref.

Twórcy

autor
  • Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
autor
  • Museum of Natural History, Faculty of Biology and Environmental Protection, University of Lodz, Kilinskiego 101, 90-011 Lodz, Poland
autor
  • Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
autor
  • Department of Teacher Training and Biological Diversity Studies, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 1/3, 90-237 Lodz, Poland
autor
  • Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
autor
  • Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
autor
  • Museum of Natural History, Faculty of Biology and Environmental Protection, University of Lodz, Kilinskiego 101, 90-011 Lodz, Poland
autor
  • Museum of Natural History, Faculty of Biology and Environmental Protection, University of Lodz, Kilinskiego 101, 90-011 Lodz, Poland
autor
  • Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
  • Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
autor
  • Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland

Bibliografia

  • Arriero E. 2009. Rearing environment effects on immune defense in Blue Tit Cyanistes caeruleus nestlings. Oecologia 159: 697-704.
  • Bańbura J., Blondel J., de Wilde-Lambrechts H., Galan M.-J., Maistre M. 1994. Nestling diet variation an insular Mediterranean population of Blue Tits Parus caeruleus: effects of years, territories and individuals. Oecologia 100: 413-420.
  • Bańbura J., Bańbura M., Glądalski M., Kaliński A., Markowski M., Michalski M., Nadolski J., Skwarska J., Zieliński P. 2011. Body condition parameters of nestling Great Tits Parus major in relation to experimental food supplementation. Acta Ornithol. 46: 207-212.
  • Bańbura J., Skwarska J., Bańbura M., Glądalski M., Hołysz M., Kaliński A., Markowski M., Wawrzyniak J., Zieliński P. 2013. Spatial and temporal variation in heterophil-to-lymphocyte ratios of nestling passerine birds: comparison of Blue Tits and Great Tits. PLOS One 8: e74226.
  • Bańbura J., Skwarska J., Kaliński A., Wawrzyniak J., Słomczyński R., Bańbura M., Zieliński P. 2008. Effect of brood size manipulation on physiological condition of nestling Blue Tits Cyanistes caeruleus. Acta Ornithol. 43: 129-138.
  • Bańbura M., Sulikowska-Drozd A., Kaliński A., Skwarska J., Wawrzyniak J., Kruk A., Zieliński P., Bańbura J. 2010. Egg size variation in Blue Tits Cyanistes caeruleus and Great Tits Parus major in relation to habitat differences in snail abundance. Acta Ornithol. 45: 121-129.
  • Boutin S. 1990. Food supplementation experiments with terrestrial vertebrates: patterns, problems, and the future. Can. J. Zool. 68: 203-220.
  • Bradley C. A., Altizer S. 2007. Urbanization and the ecology of wildlife diseases. TREE 22: 95-102.
  • Brinkhof M. W. G., Heeb P., Kölliker M., Richner H. 1999. Immunocompetence of nestling Great Tits in relation to rearing environment and parentage. Proc. R. Soc. B 266: 2315-2322.
  • Brommer J. E. 2004. Immunocompetence and its cost during development: an experimental study in blue tit nestlings. Proc. R. Soc. Lond B (Suppl) 271: S110-S113.
  • Brommer J., Pitala N., Siitari H., Kluen E., Gustafsson L. 2011. Body size and immune defense of nestling Blue Tits (Cyanistes caeruleus) in response to manipulation of ectoparasites and food supply. Auk 128: 556-563.
  • Brzęk P., Konarzewski M. 2007. Relationship between avian growth rate and immune response depends on food availability. J. Exp. Biol. 210: 2361-2367.
  • Cichoń M., Dubiec A. 2005. Cell-mediated immunity predicts the probability of local recruitment in nestling Blue Tits. J. Evol. Biol. 18: 962-966.
  • Cleasby I. R., Burke T., Schroeder J., Nakagawa S. 2011. Food supplements increase adult tarsus length, but not growth rate, in an island population of house sparrows (Passer domesticus). BMC Res. Not. 4, doi: 10.1186/1756- 0500-4-431
  • Cook M. I., Hamer K. C. 1997. Effects of supplementary feeding on provisioning and growth rates of nestling Puffins Fratercula arctica: evidence for regulation of growth. J. Avian Biol. 28: 56-62.
  • Crawley M. J. 2002. Statistical computing: an introduction to data analysis using S-Plus. John Wiley & Sons, Chichester, UK.
  • Cuervo J. L., Soler J. J., Aviles J. M., Pérez-Contreras T., Navarro C. 2011. Experimental feeding affects the relationship between hematocrit and body mass in Spotless Starling (Sturnus unicolor) nestlings. J. Ornithol. 152: 201- 206.
  • Daan S., Tinbergen J. M. 1997. Adaptation of life histories. In: Krebs J. R., Davies N. B (eds). Behavioural Ecology: An Evolutionary Approach. Fourth Edition. Blackwell Science, Oxford, pp. 311-333.
  • Dehnhard N., Quillfeldt P., Hennicke J. C. 2011. Leucocyte profiles and H/L ratios in chicks of Red-tailed Tropicbirds reflect the ontogeny of the immune system. J. Comp. Phys. B 181: 641-648.
  • De Neve L., Soler J. J., Ruiz-Rodríguez M., Martín-Gálvez D., Pérez-Contreras T., Soler M. 2007. Habitat-specific effects of a food supplementation experiment on immunocompetence in Eurasian Magpie Pica pica nestlings. Ibis 149: 763-773.
  • Dubiec A., Cichoń M., Deptuch K. 2006. Sex-specific development of cell-mediated immunity under experimentally altered rearing conditions in Blue Tit nestlings. Proc. R. Soc. B 273: 1759-1764.
  • Elkins N. 1988. Weather and bird behaviour. 2nd Edition. T & AD Poyser, London.
  • Gavier-Widen D., Duff J. P., Meredith A. (eds). 2012. Infectious diseases of wild mammals and birds in Europe. Wiley- Blackwell, Oxford.
  • Gross W. B., Siegel H. S. 1983. Evaluation of heterophil/lymphocyte ratio as a measurement of stress in chickens. Avian Dis. 27: 972-979.
  • Herring G., Cook M. I., Gawlik D. E., Call E. M. 2011. Food availability is expressed through physiological stress indicators in nestling White Ibis: a food supplementation experiment. Funct. Ecol. 25: 682-690.
  • Hoi-Leitner M., Romero-Pujante M., Hoi H., Pavlova A. 2001. Food availability and immune capacity in Serin (Serinus serinus) nestlings. Behav. Ecol. Sociobiol. 49: 333-339.
  • Hörak P., Tegelmann L., Ots I., Møller A. P. 1999. Immune function and survival of Great Tit nestlings in relation to growth conditions. Oecologia 121: 316-322.
  • Ilmonen P., Hasselquist D., Langefors Å., Wiehn J. 2003. Stress, immunocompetence and leucocyte profiles of pied flycatchers in relation to brood size manipulation. Oecologia 136: 148-154.
  • Jenni-Eiermann S., Jenni L. 1998. What can plasma metabolites tell us about the metabolism, physiological state and condition of individual birds? An overview. Biol. Cons. Fauna 102: 312-319.
  • Kaliński A., Bańbura M., Skwarska J., Wawrzyniak J., Zieliński P., Glądalski M., Markowski M., Bańbura J. 2012. Parallel variation in haemoglobin concentration in nestling-rearing Blue Tits Cyanistes caeruleus and Great Tits Parus major. Acta Ornithol. 47: 129-136.
  • Kaliński A., Wawrzyniak J., Bańbura M., Skwarska J., Zieliński P., Bańbura J. 2009. Haemoglobin concentration and body condition of nestling Great Tits Parus major a comparison of first and second broods in two contrasting seasons. Ibis 151: 667-676.
  • Krause E. T., Honarmand M., Wetzel J., Naguib M. 2009. Early fasting is long lasting: differences in early nutritional conditions reappear under stressful conditions in adult female Zebra Finches. PLOS One 3: 1-6.
  • Kriengwatana B., Wada H., Macmillan A., MacDougall- Shackleton S. A. 2013. Juvenile nutritional stress affects growth rate, adult organ mass, and innate immune function in Zebra Finches (Taeniopygia guttata). Physiol. Bioch. Zool. 86: 769-781.
  • Lack D. 1954. The natural regulation of animal numbers. Clarendon, Oxford.
  • Lochmiller R. L., Deerenberg C. 2000. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88: 87-98.
  • Marciniak B., Nadolski J., Nowakowska M., Loga B., Bańbura J. 2007. Habitat and annual variation in arthropod abundance affects Blue Tit Cyanistes caeruleus reproduction. Acta Ornithol. 42: 53-62.
  • Martin T. E. 1987. Food as a limit on breeding birds: a life-history perspective. Ann. Rev. Ecol. Syst. 18: 453-487.
  • Metcalfe N. B., Monaghan P. 2001. Compensation for a bad start: grow now, pay later? TREE 16: 254-260.
  • Moreno J., Merino S., Martinez J., Sanz J. J., Arriero E. 2002. Heterophil/lymphocyte ratios and heat-shock protein levels and related to growth in nestling birds. Ecoscience 9: 434-139.
  • Nadolski J., Skwarska J., Kaliński A., Bańbura M., Snigula R., Bańbura J. 2006. Blood parameters as consistent predictors of nestling performance in great tits (Parus major) in the wild. Comp. Bioch. Physiol. A 143: 50-54.
  • Naguib M., Riebel K., Marzal A., Gil D. 2004. Nestling immuno- competence and testosterone covary with brood size in a songbird. Proc. R. Soc. B 271: 833-838.
  • Perrins C. M. 1979. British Tits. Collins, London.
  • Perrins C. M. 1991. Tits and their caterpillar food supply. Ibis 133: 49-54.
  • Radford A. N., McCleery R. H., Woodburn R. J. W., Morecroft M. D. 2001. Activity patterns of parent Great Tits Parus major feeding their young during rainfall. Bird Study 48: 214-220.
  • Reynolds S. J., Schoech S. J., Bowman R. 2003. Diet quality during pre-laying and nestling periods influences growth and survival of Florida scrub-jay (Aphelocoma coerulescetis) chicks. J. Zool. 261: 217-226.
  • Scanes C. G., Braun E. 2013. Avian metabolism: its control and evolution. Front. Biol. 8: 134-159.
  • Sheldon B. C., Verhulst S. 1996. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. TREE 11: 317-321.
  • Sibly R., Calow P. 1986. Physiological ecology of animals: an evolutionary approach. Blackwell, Oxford.
  • Smallegange I. M., Van der Meer J., Fiedler W. 2011. Population dynamics of three songbird species in a nestbox population in Central Europe show effects of density, climate and competitive interactions. Ibis 153: 806-817.
  • Suorsa P., Helle H., Koivunen V., Huhta E., Nikula A., Hakkarainen H. 2004. Effects of forest patch size on physiological stress and immunocompetence in an area-sensitive passerine, the Eurasian Treecreeper (Certhia familiaris): an experiment. Proc. R. Soc. B 271: 435-440.
  • Tilgar V., Mänd R., Kilgas P., Mägi M. 2010. Long-term consequences of early ontogeny in free-living Great Tits Parus major. J. Ornithol. 151: 61-68.
  • Tinbergen J. M., Boerlijst M. C. 1990. Nestling weight and survival in individual Great Tits (Parus major). J. Anim. Ecol. 59: 1113-1127.
  • Van der Most P. J., de Jong B., Parmentier H., Verhulst S. 2011. Trade-off between growth and immune function: a meta-analysis of selection experiments. Funct. Ecol. 25: 74-80.
  • Van Noordwijk A. J., McCleery R. H., Perrins C. M. 1995. Selection for the timing of Great Tit breeding in relation to caterpillar growth and temperature. J. Anim. Ecol. 64: 451-458.
  • Wesołowski T., Rowiński P. 2008. Late leaf development in pedunculate oak (Quercus robur): An antiherbivore defence? Scand. J. Forest Res. 23: 386-394.
  • West B. T., Welch K. B., Gałecki A. T. 2007. Linear Mixed Models — a practical guide using statistical software. Chapman & Hall, London.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-018f152a-97b9-4066-8513-e6fd37b9e962
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.