Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 68 | 1 |
Tytuł artykułu

Characterization of active compounds of different garlic (Allium sativum L.) cultivars

Treść / Zawartość
Warianty tytułu
Języki publikacji
Garlic (Allium sativum L.) has a reputation as a therapeutic agent for many different diseases such as microbial infections, hypertension, hypercholesterolaemia, diabetes, atherosclerosis and cancer. Health benefi ts of garlic depend on its content of biologically-active compounds, which differs between cultivars and geographical regions. The aim of this study was to evaluate and compare the biological activity of aqueous extracts from nine garlic varieties from different countries (Poland, Spain, China, Portugal, Burma, Thailand and Uzbekistan). Antioxidant properties were evaluated through free radical scavenging (DPPH•, ABTS•+) and ion chelation (Fe2+, Cu2+) activities. The cytotoxicity of garlic extracts was evaluated in vitro using Neutral Red Uptake assay in normal human skin fi broblasts. The obtained results revealed that garlic extracts contained the highest amount of syringic and p-hydroxybenzoic acids derivatives. The lowest IC50 values for DPPH•, ABTS•+ scavenging and Cu2+ chelating ability were determined in Chinese garlic extracts (4.63, 0.43 and 14.90 μg/mL, respectively). Extracts from Spanish cultivar Morado and Chinese garlic were highly cytotoxic to human skin fi broblasts as they reduced cellular proliferation by 70–90%. We showed diverse contents of proteins and phenolic components in garlic bulbs from different varieties. The obtained results could help to choose the cultivars of garlic which contain signifi cant amounts of active compounds, have important antioxidant properties and display low antiproliferative effect and/or low cytotoxicity against normal human skin fi broblast BJ.
Opis fizyczny
  • Department of Public Health, Dietetics and Lifestyle Disorders, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35–225 Rzeszow, Poland
  • Laboratory of Mycology, Department of Environmental Microbiology, University of Life Sciences, Leszczynskiego 7, 20–069 Lublin, Poland
  • Department of Cosmetology, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35–225 Rzeszow, Poland
  • Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna 8, 20–704 Lublin, Poland
  • Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna 8, 20–704 Lublin, Poland
  • Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna 8, 20–704 Lublin, Poland
  • Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20–090 Lublin, Poland
  • Department of Public Health, Dietetics and Lifestyle Disorders, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35–225 Rzeszow, Poland
  • Department of Public Health, Dietetics and Lifestyle Disorders, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35–225 Rzeszow, Poland
  • 1. Adler-Nissen J., Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem., 1979, 27, 1256–1262.
  • 2. Amagase H., Clarifying the real bioactive constituents of garlic. J. Nutr., 2006, 136, 716S–725S.
  • 3. Arts I.C.W., Hollman P.C.H., Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr., 2005, 81, 317S–325S.
  • 4. Azadi H.G., Riazi G.H., Ghaffari S.M., Ahmadian S., Khalife T.J., Effects of Allium hirtifolium (Iranian shallot) and its allicin on microtubule and cancer cell lines. African J. Biotechnol., 2009, 8, 5030–5037.
  • 5. Beato V.M., Orgaz F., Mansilla F., Montaño A., Changes in phenolic compounds in garlic (Allium sativum L.) owing to the cultivar and location of growth. Plant Foods Hum. Nutr., 2011, 66, 218–223. 6. Belloir C., Singh V., Daurat C., Siess M.H., Le Bon A. M., Protective effects of garlic sulfur compounds against DNA damage induced by direct- and indirect-acting genotoxic agents in HepG2 cells. Food Chem. Toxicol., 2006, 44, 827–834.
  • 7. Bhandari P., Garlic (Allium sativum L.): A review of potential therapeutic applications. Int. J. Green Pharm., 2012, 6, 2, 118–129.
  • 8. Biskup I., Golonka I., Gamian A., Sroka Z., Antioxidant activity of selected phenols estimated by ABTS and FRAP methods. Postępy Hig. Med. Doświad., 2013, 67, 958–963.
  • 9. Bradford M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248–254.
  • 10. Brand-Williams W., Cuvelier M.E., Berset C., Use of a free radical method to evaluate antioxidant activity. LWT – Food Sci. Technol., 1995, 28, 25–30.
  • 11. Dai J., Mumper R.J., Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 2010, 15, 7313–7352.
  • 12. Decker E.A., Welch B., Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem., 1990, 38, 674–677.
  • 13. Durak A., Baraniak B., Jakubczyk A., Świeca M., Biologically active peptides obtained by enzymatic hydrolysis of Adzuki bean seeds. Food Chem., 2013, 141, 2177–2183.
  • 14. Elias R.J., Kellerby S.S., Decker E.A., Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutr., 2008, 48, 430–441.
  • 15. Erdmann K., Cheung B.W.Y., Schröder H., The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J. Nutr. Biochem., 2008, 19, 643–654.
  • 16. Gordon M.H., The Mechanism of Antioxidant Action In Vitro. 1990, in: Food Antioxidants. Springer Netherlands, Dordrecht, pp. 1–18.
  • 17. Gorinstein S., Drzewiecki J., Leontowicz H., Leontowicz M., Najman K., Jastrzebski Z., Zachwieja Z., Barton H., Shtabsky B., Katrich E., Trakhtenberg S., Comparison of the bioactive compounds and antioxidant potentials of fresh and cooked Polish, Ukrainian, and Israeli garlic. J. Agric. Food Chem., 2005, 53, 2726–2732.
  • 18. Ishige K., Schubert D., Sagara Y., Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med., 2001, 30, 433–446.
  • 19. Ismail S., Jalilian F.A., Talebpour A.H., Zargar M., Shameli K., Sekawi Z., Jahanshiri F., Chemical composition and antibacterial and cytotoxic activities of Allium hirtifolium Boiss. Biomed Res. Int., 2013, 2013, art no. 696835.
  • 20. Iwaniak A., Minkiewicz P., Proteins as the source of physiologically. Acta Sci. Pol. Technol. Aliment., 2007, 6, 5–15.
  • 21. Karaś M., Baraniak B., Rybczyńska K., Gmiński J., Gaweł-Bęben K., Jakubczyk A., The infl uence of heat treatment of chickpea seeds on antioxidant and fibroblast growth-stimulating activity of peptide fractions obtained from proteins digested under simulated gastrointestinal conditions. Int. J. Food Sci. Technol., 2015, 50, 2097–2103.
  • 22. Kim J.S., Kang O.J., Gweon O.C., Comparison of phenolic acids and fl avonoids in black garlic at different thermal processing steps. J. Funct. Foods, 2013, 5, 80–86.
  • 23. Kohda K., Goda H., Itoh K., Samejima K., Fukuuchi T., Aged garlic extract reduces ROS production and cell death induced by 6-hydroxydopamine through activation of the Nrf2-ARE pathway in SH-SY5Y cells. Pharmacol. Pharm., 2013, 4, 1, 31–40.
  • 24. Laranjinha J.A., Almeida L.M., Madeira V.M., Reactivity of dietary phenolic acids with peroxyl radicals: antioxidant activity upon low density lipoprotein peroxidation. Biochem. Pharmacol., 1994, 48, 487–494.
  • 25. Lee J.-C., Son Y.-O., Pratheeshkumar P., Shi X., Oxidative stress and metal carcinogenesis. Free Radic. Biol. Med., 2012, 53, 742–757.
  • 26. Lemar K.M., Turner M.P., Lloyd D., Garlic (Allium sativum) as an anti-Candida agent: a comparison of the effi cacy of fresh garlic and freeze-dried extracts. J. Appl. Microbiol., 2002, 93, 398–405.
  • 27. Lewin G., Popov I., Antioxidant effects of aqueous garlic extract. 2nd communication: Inhibition of the Cu(2+)-initiated oxidation of low density lipoproteins. Arzneimittelforschung – Drug Res., 1994, 44, 604–607.
  • 28. Lu X., Ross C.F., Powers J.R., Aston D.E., Rasco B.A., Determination of total phenolic content and antioxidant activity of garlic (Allium sativum) and elephant garlic (Allium ampeloprasum) by attenuated total refl ectance-Fourier transformed infrared spectroscopy. J. Agric. Food Chem., 2011, 59, 5215–5221.
  • 29. Meriga B., Mopuri R., Murali Krishna T., Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pac. J. Trop. Med., 2012, 5, 391–395.
  • 30. Miean K.H., Mohamed S., Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem., 2001, 49, 3106–3112.
  • 31. Oboh G., Akinyemi A.J., Ademiluyi A.O., Inhibitory effect of phenolic extract from garlic on angiotensin-1 converting enzyme and cisplatin induced lipid peroxidation – in vitro. Int. J. Biomed. Sci., 2013, 9, 98–106.
  • 32. Ou C.-C., Tsao S.-M., Lin M.-C., Yin M.-C., Protective action on human LDL against oxidation and glycation by four organosulfur compounds derived from garlic. Lipids, 2003, 38, 219–224.
  • 33. Park E.Y., Murakami H., Mori T., Matsumura Y., Effects of protein and peptide addition on lipid oxidation in powder model system. J. Agric. Food Chem., 2005, 53, 137–144.
  • 34. Pedraza-Chaverrí J., Gil-Ortiz M., Albarrán G., Barbachano-Esparza L., Menjívar M., Medina-Campos O.N., Garlic’s ability to prevent in vitro Cu2+-induced lipoprotein oxidation in human serum is preserved in heated garlic: effect unrelated to Cu2+-chelation. Nutr. J., 2004, 3, art. no. 10.
  • 35. Petrovska B., Cekovska S., Extracts from the history and medical properties of garlic. Pharmacogn. Rev., 2010, 4, 106–110.
  • 36. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26, 1231–1237.
  • 37. Repetto G., del Peso A., Zurita J.L., Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc., 2008, 3, 1125–1131.
  • 38. Rocha L.D., Monteiro M.C., Teodoro A.J., Anticancer properties of hydroxycinnamic acids – a review. Cancer Clin. Oncol., 2012, 1, 109–121.
  • 39. Shrivastava S., Ganesh N., Tumor inhibition and cytotoxicity assay by aqueous extract of onion (Allium cepa) & Garlic (Allium sativum): An in-vitro analysis. Int. J. Phytomed., 2010, 2, 80–84.
  • 40. Singleton V.L., Rossi J.A., Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158.
  • 41. Spencer J.P.E., Abd El Mohsen M.M., Minihane A.-M., Mathers J.C., Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br. J. Nutr., 2008, 99, 12–22.
  • 42. Swieca M., Baraniak B., Nutritional and antioxidant potential of lentil sprouts affected by elicitation with temperature stress. J. Agric. Food Chem., 2014, 62, 3306–3313
  • 43. Szychowski K.A., Binduga U.E., Rybczyńska-Tkaczyk K., Leja M.L., Gmiński J., Cytotoxic effects of two extracts from garlic (Allium sativum L.) cultivars on the human squamous carcinoma cell line SCC-15. Saudi J Biol Sci. 2016, DOI: 10.1016/j. sjbs.2016.10.005 (in press).
  • 44. Torres-Fuentes C., Alaiz M., Vioque J., Affinity purification and characterisation of chelating peptides from chickpea protein hydrolysates. Food Chem., 2011, 129, 485–490.
  • 45. Vinson J.A., Hao Y., Su X., Zubik L., Phenol antioxidant quantity and quality in foods: vegetables. J. Agric. Food Chem., 1998, 46, 3630–3634.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.