Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Selecting counties to participate in agricultural carbon compensation in China


Warianty tytułu

Języki publikacji



Agriculture has the dual attributes of being a carbon source and a carbon sink. The agricultural carbon compensation mechanism is important for increasing agricultural carbon sink and reducing agricultural carbon emissions. However, there is no specific entry threshold for the implementation of agricultural carbon compensation in China. Taking the two indicators of agricultural carbon sink level and agricultural carbon emission intensity as the basic indicators, and taking the regional average agricultural carbon sink level and the regional average agricultural carbon emission intensity as the baseline, we established the agricultural carbon compensation area selection process. According to the agricultural carbon compensation area selection process, the results obtained in Hotan Prefecture were reasonable. The result of selection accorded with the actual situation of agricultural carbon emission and agricultural carbon sinks in Hotan Prefecture.

Słowa kluczowe








Opis fizyczny



  • Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
  • Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
  • Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
  • Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China


  • 1. DACE E., MUIZNIECE I., BLUMBERGA A., KACZALA A. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions – Application of system dynamics modeling for the case of Latvia. Science of the Total Environment. 527-528, 80, 2015.
  • 2. XIONG C.H., YANG D.G., XIA F.Q., HUO J.W. Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on diferent stages in Xinjiang, China. Sci. Rep. 6, 36912, 2016.
  • 3. STEVANOVIC M., POPP A., BODIRSKY B.L. Mitigation Strategies for Greenhouse Gas Emissions from Agriculture and Land-Use Change: Consequences for Food Prices. Environ. Sci. Technol. 51, 365, 2017.
  • 4. TIAN Y.,ZHANG JB, HE Y.Y. Research on Spatial-Temporal Characteristics and Driving Factor of Agricultural Carbon Emissions in China. Journal of Integrative Agriculture. 13(6), 1393, 2014.
  • 5. NORSE D. Low carbon agriculture: objectives and policy pathways. Environment Development. 59, 25, 2012.
  • 6. XIONG C.H., YANG D.G., HUO J.W. Spatial-temporal characteristics and LMDI-based impact factor decomposition of agricultural carbon emissions in Hotan Prefecture, China. Sustainability. 8 (3), 262, 2016.
  • 7. XIONG C.H., YANG D.G., HUO J.W., ZHAO Y.N. Agricultural Net Carbon Effect and Agricultural Carbon Sink Compensation Mechanism in Hotan Prefecture, China. Polish Journal of Environmental Studies. 26 (1), 365, 2017.
  • 8. COLE C.V. Agricultural Options for Mitigation of Greenhouse Gas Emission (C). Watson R. T., Znyowera M. C., Moss R. H. Climate Change 1995 - Impacts Adaptions and Mitigation of Climate Change Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 1, 1996.
  • 9. LAL R., KIMBLE J. M., FOLLETT R. F., COLE C. V. The Potential of US Cropland to Sequester Carbon and Mitigate the Greenhouse Effect. Chelsea MI: Sleeping Bear Press, 128, 1998.
  • 10. WANG C., WANG F. China can lead on climate change. Science. 357, 764, 2017.
  • 11. XIONG C.H., Chen S., YANG D.G. China should reduce agricultural greenhouse gas emissions to enhance its ability to lead on global climate change. Science. 2017. (E-letter, 5 October 2017)
  • 12. LIU Y., LI Y. Revitalize the world’s countryside. Nature. 548, 275-277, 2017.
  • 13. FAO. The state of food and agriculture. FAO: Rome, Italy, 15, 2016.
  • 14. GAO S., HUANG X., ZHAO R. Low carbon development model and policy research in Jiangsu, Nanjing University Press, 2013 [In Chinese].
  • 15. GEWIN V., MONAHAN P. Us moves cut greenhouse emissions farms new study finds big global challenge. Science, 2016.
  • 16. SILVER J. The potentials of carbon markets for infrastructure investment in sub-Saharan urban Africa. Current Opinion in Environmental Sustainability. 13, 25, 2015.
  • 17. KRAGT M.E., GIBSON F.L., MASEYK F., WILSON K.A. Public willingness to pay for carbon farming and its co-benefits. Ecological Economics. 126, 125, 2016.
  • 18. LEE J., INGALLS M., ERICKSON J.D., WOLLENBERG E. Bridging organizations in agricultural carbon markets and poverty alleviation: An analysis of pro-Poor carbon market projects in East Africa. Global Environmental Change. 39, 98, 2016.
  • 19. CRETI A., JOETS M. Multiple bubbles in the European Union Emission Trading Scheme. Energy Policy. 107, 119, 2017.
  • 20. LI W., JIA Z. J. Carbon tax, emission trading, or the mixed policy: which is the most effective strategy for climate change mitigation in China? Mitig Adapt Strateg Glob Change. 22, 973, 2017.
  • 21. LI X. Y., TANG B. J. Incorporating the transport sector into carbon emission trading scheme: an overview and outlook. Nat Hazards. 88, 683, 2017.
  • 22. XIA Q L. Research on Agricultural Carbon Sinks in China [EB/OL]. 2010. [In Chinese].
  • 23. XIE G.D., LI S.M., XIAO Y., QI Y. Value of carbon sink concept and evaluation. Journal of nature reSource. 26 (1), 1, 2011 [In Chinese].
  • 24. TAN X.P., WANG X.Y. The market performance of carbon trading in China: A theoretical framework of structure-conduct-performance. Journal of Cleaner Production. 159, 410, 2017.
  • 25. ZHAO X.G., WU L., LI A. Research on the efficiency of carbon trading market in China. Renewable and Sustainable Energy Reviews. 79, 1, 2017.
  • 26. SONG Y.Z., LIU T.S., LI X., Liang D.P. Region division of China’s carbon market based on the provincial/ municipal carbon intensity. Journal of Cleaner Production. 164, 1312, 2017.
  • 27. SUN F. Agricultural greenhouse gas emission reduction market mechanism in China: a case study of agricultural voluntary emission reduction project in Xinjiang, Sichuan. Beijing, Chinese Academy of Agricultural Sciences, 2011 [In Chinese].
  • 28. JOHNSON JANE M.F. Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution. 150, 107, 2007.
  • 29. HERRERO M., HENDERSON B., HAVLIK P. Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change. 6, 452, 2016.
  • 30. YUE Q., XU X., HILLIER J., CHENG K., PAN G. Mitigating greenhouse gas emissions in agriculture: From farm production to food consumption. Journal of Cleaner Production. 149, 1011, 2017.
  • 31. FANG J.Y., GUO Z.D., PIAO S.L., CHEN A.P. Estimation of terrestrial vegetation carbon sinks in China from 1981 to 2000. Science in China (Series D: Earth Sciences). 37 (6), 804, 2007 [In Chinese].
  • 32. ZHANG D. D., ZHANG S. M., HUANG W. Estimation of carbon sources and sinks of the agricultural system in Zhejiang Province. Chinese Journal of Agricultural Resources and Regional Planning. 33 (5), 12, 2012 [In Chinese].
  • 33. LIU K., JIANG S.H., ZHU W.Y. Estimation of carbon sequestration value and analysis of space effect of forests in Guangdong Province. Chinese Journal of Agricultural Resources and Regional Planning. 36 (3), 120, 2015 [In Chinese].
  • 34. IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151, 2014.
  • 35. TAN Z., LI L., WANG J., WANG J. Examining the driving forces for improving China’s CO₂ emission intensity using the decomposing method. Applied Energy. 88, 4496, 2011.
  • 36. LIU Y., ZHOU Z., ZHANG X. Net global warming potential and greenhouse gas intensity from the double rice system with integrated soil-crop system management: A three-year field study. Atmospheric Environment. 116, 92, 2015.
  • 37. PRATIBHA G., SRINIVAS I., RAO K.V. Net global warming potential and greenhouse gas intensity of conventional and conservation agriculture system in rainfed semiarid tropics of India. Atmospheric Environment. 145, 239, 2016.
  • 38. WANG Z., ZHANG B., LIU T. Empirical analysis on the factors influencing national and regional carbon intensity in China. Renewable and Sustainable Energy Reviews. 55, 34, 2016.
  • 39. ZHANG W., LI K., ZHOU D., ZHANG W., GAO H. Decomposition of intensity of energy-related CO₂ emission in Chinese provinces using the LMDI method. Energy Policy. 92, 369, 2016.
  • 40. CARLSON K.M., GERBER J.S., MUELLER N.D. Greenhouse gas emissions intensity of global croplands. Nature Climate Change. 7, 63, 2017.
  • 41. LI W., SUN W., LI G.M., CUI P.F., WU W., JIN B.H. Temporal and spatial heterogeneity of carbon intensity in China’s construction industry. Resources, Conservation & Recycling. 126,162, 2017.
  • 42. WANG C., WEN B., WANG F., JIN L., YE Y. Factors Driving Energy-Related Carbon Emissions in Xinjiang: Applying the Extended STIRPAT Model. Polish Journal of Environmental Studies, 26, 1747, 2017.
  • 43. ZHANG X., ZHAO Y., SUN Q., WANG C. Decomposition and Attribution Analysis of Industrial Carbon Intensity Changes in Xinjiang, China. Sustainability, 9, 459, 2017.
  • 44. WANG C., WANG F., ZHANG X., YANG Y., SU Y., YE Y., ZHANG H. Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang. Renewable and Sustainable Energy Reviews, 67, 51, 2017.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.