PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 03 | 1 |

Tytuł artykułu

Desalination of groundwater and impoundments using nano-zero valent iron, n-Fe0

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Salinization of groundwater is a major problem, particularly in areas with limited infrastructure. 14 diffusion reactors are operated diabatically at -8°C to 20°C to determine the amount of NaCl removed by n-Fe0. The reactors establish NaCl removal by Fe0: (i) 44,000-77,000 nm particle size (PS) = 0.0675-0.1925 g L-1 [feed water (FW) = 0.89 g L-1]; (ii) 50 nm PS = 0.953-1.14 g L-1 [FW = 1.095-1.19 g L-1]; (iii) 50 nm PS under nitrogen saturation (0.1- 0.2 MPa) = 9.693 g L-1 [FW = 10 g L-1]; (iv) <0.01 g 50 nm PS L-1 under nitrogen saturation (0.1-0.2 MPa) = 1.564 g L-1 [FW = 4 g L-1]; (v) 50 nm PS modified by nitrogen saturation (PSN) = 5.52 g L-1 [FW = 6.89 g L-1]. Desalination commences at a time, t, after the n-Fe0 is added to the water, and continues with an exponential decline until a base (equilibrium) salinity is reached. The effectiveness of n-Fe0 as a desalination agent appears to increase with increased water salinity. Placement of PSN in an existing impoundment, or aquifer, may provide a cost effective, zero energy, partial desalination solution, which can be used to support emergency relief, agriculture and extractive industries.

Wydawca

-

Rocznik

Tom

03

Numer

1

Opis fizyczny

p.21-38,fig.,ref.

Twórcy

autor
  • DCA Consultants Ltd., Haughend Farm, Bridge of Earn Road, Dunning PH2 9BX, U.K.

Bibliografia

  • Al Hashemi R., Zarreen A., Al Raisi A., Al Marzooqi F.A., Hasan S.W., 2014, A review of desalination trends in Gulf Cooperation Council Countries, International Interdisciplinary Journal of Scientific Research, 1, 72-96
  • Al-Moubaraki A.H., Al-Judaibi A., Asiri M., 2015, Corrosion of C-steel in the Red Sea: Effect of immersion time and inhibitor concentration, International Journal of Electrochemical Science, 10, 4252-4278
  • Antia D.D.J., 2010, Sustainable zero-valent metal (ZVM) water treatment associated with diffusion, infiltration, abstraction and recirculation, Sustainability, 2 (9), 2988-3073, DOI: 10.3390/su2092988
  • Antia D.D.J., 2014, Groundwater water remediation by static diffusion using nano-zero valent metals [ZVM](Fe0, Cu0, Al0), n-FeHn+, n-Fe(OH)x, n-FeOOH, n-Fe-[OxHy](n+/-), [in:] Nanomaterials for Environmental Protection, B.I. Kharisov, O.V. Kharissova, H.V.R. Dias (eds.), Wiley Inc. Hoboken, New Jersey, USA, 3-25, DOI: 10.1002/9781118845530.ch1
  • Arumugam K., Varnado C.D., Sproules S., Lynch V.M., Bielawski C.W., 2013, Redox-switchable ring-closing metathesis: catalyst design, synthesis and study, Chemistry, 19 (33), 10866-10875, DOI: 10.1002/chem.201301247
  • Ayers R.S., Westcot D.W., 1985, Water quality for agriculture, Irrigation and Drainage Paper, No 29, Rev. 1, reprinted 1989, 1994, Food and Agriculture Organization of the UN, Rome
  • Balasubramanian P., 2013, A brief review on best available technologies for reject water (brine) management in indus tries, International Journal of Environmental Sciences, 3 (6), 2010-2018, DOI: 10.6088/ijes.20130306000020
  • Boschee P., 2012, Handling produced water from hydraulic fracturing, Oil and Gas Facilities, 1, 22-26
  • Boschee P., 2014, Produced and flowback water recycling and reuse, Oil and Gas Facilities, 3, 16-24
  • Bottero J-Y., Manceau A., Villieras F., Techoubar D., 1994, Structure and formation of FeOOH(Cl) polymers, Langmuir, 10, 316-319, DOI: 10.1021/la00013a046
  • Butler E.L., 2012, Point of use water treatment with forward osmosis for emergency and population migration relief, Honors Scholar Theses, Paper 279, University of Connecticut
  • Butler E.L., Silva A., Horton K., Rom Z., Chwatko M., Havasov A., McCutcheon J.R., 2013, Point of use water treatment with forward osmosis for emergency relief, Desalination, 312, 23-30, DOI: 10.1016/j.desal.2012.12.013
  • Carberry J.J., 2001, Chemical and catalytic reaction engineering, Dover Publications, New York, 642 pp.
  • Charlet L., Tornassat C., 2005, Fe(II)-Na(I)-Ca(II) cation exchange on montmorillonite in chloride medium: evidence for preferential clay adsorption of chloride-metal ion pairs in seawater, Aquatic Geochemistry, 11, 115-137, DOI: 10.1007/s10498-004-1166-5
  • Curran G., 2007, Water for livestock: interpreting water quality tests, Primefact No. 533, New South Wales Department of Primary Industry, State of New South Wales, Australia, available at http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0018/111348/water-for-livestock-interpreting-water-qualitytests.pdf (data access 30.04.2015)
  • Dante S., Hou Z., Risbud S., Stroeve P., 1999, Nucleation of iron oxy-hydroxide nanoparticles by layer-by-layer polyionic assemblies, Langmuir, 15 (6), 2176-2182, DOI: 10.1021/la980587j
  • Ebbing D.D., Gammon S.D., 1999, General Chemistry, 6th edition, Houghton Mifflin Co, Boston, USA, 1101 pp.
  • Elimelech M., Phillip W.A., 2011, The future of seawater desalination: energy, technology and the environment, Science, 333 (6043), 712-717, DOI: 10.1126/science.1200488
  • El-Nashar W.Y., 2013, The combined effect of water-logging and salinity on crop yield, IOSR Journal of Agriculture and Veterinary Science, 6 (4), 40-49, DOI: 10.9790/2380-0644049
  • EU, 1999, Council Directive 98/83/EC of 3rd November 1998 on the quality of water intended for human consupmtion, Official Journal of the European Communities, L330, 32-51, available at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1998:330: 0032:0054:EN:PDF (data access 30.04.2015)
  • FAO, 2011, The state of the world’s land and water resources for food and agriculture (SOLAW) – Managing systems at risk, Food and Agricultural Organization of the United Nations and Earth Scan, Abingdon, UK, available at http://www.fao.org/docrep /015/i1688e/i1688e00.pdf (data access 30.04.2015)
  • Fronczyk J., Pawluk K., Michniak M., 2010, Application of permeable reactive barriers near roads for chloride ions removal, Annals of Warsaw University of Life Sciences: Land Reclamation, 42 (2), 249-259, DOI 10.2478/v10060-008-0083-5
  • Fronczyk J., Pawluk K., Garbulewski K., 2012, Multilayer PRBs – Effective technology for protection of the groundwater environment in traffic infrastructures, Chemical Engineering Transactions, 28, 67-72, DOI: 10.3303/CET1228012
  • German D., Thiex N., Wright C., 2008, Interpretation of water analysis for livestock suitability, C274, South Dakota State University and US Department of Agriculture, available at http://region8water.colostate.edu/PDFS/Interpretation%20of%20Water%20 Analysis%20for%20Livestock%20Suitability.pdf (data access 30.04.2015)
  • Grattan S.R., 2002, Irrigation water salinity and crop production, Publication 8066, FWQP Reference Sheet 9.10, University of California, Oakland, California, USA, available at http://region8water.colostate.edu/PDFS/Interpretation%20of%20Water%20Analysis%20for%20Livestock%20Suitability.pdf (data access 30.04.2015)
  • Hajbl F., Hamml H., M’nif A., 2010, Reuse of RO desalination plant reject brine, Journal of Phase Equilbria and Diffusion, 31 (4), 341-347, DOI: 10.1007/s11669-010-9727-3
  • Haluszczak L.O., Rose A.W., Kump L.R., 2013, Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania, USA, Applied Geochemistry, 28, 55-61, DOI: 10.1016/j.apgeochem.2012.10.002
  • Hill R., Koenig R.T., 1999, Water Salinity and crop yield, Utah Water Quality, AG-425.3, Utah State University Cooperative Extension, available at http://www.researchgate.net/publication/242759516_WATER_SALINITY_AND_CROP_YIELD/links/028f46510cf2dd0fc332cb55.pdf (data access 30.04.2015)
  • IS, 2012, Drinking Water Specification, Second Revision of IS 10500, Bureau of Indian Standards, New Delhi, India
  • Jardim W.F., 2014, Medicao e interpretacao de valores do potecial redox (EH) em matrizes ambientais, Quimica Nova, 37 (7), 1233-1235, DOI: 10.5935/0100-4042.20140207
  • Katerji N., van Hoorn J.W., Hamdy A., Mastrorilli M., 2003, Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods, Agricultural Water Management, 62 (1), 37-66, DOI: 10.1016/S0378-3774(03)00005-2
  • Knapp K.C., Baerenklau K.A., 2006, Ground water quantity and quality management: agricultural production and aquifer salinization over long time scales, Journal of Agricultural and Resource Economics, 31 (3), 616-641
  • Kozin P.A., Boily J.-F., 2013, Proton binding and ion exchange at the akaganeite/water interface, Journal of Physical Chemistry C, 117 (2), 6409-6419, DOI: 10.1021/jp3101046
  • McGeachy J., 2010, The progression of sequential reactions, Undergraduate Journal of Mathematical Modelling: One + Two, 2 (2), 1-17, DOI: 10.5038/2326-3652.2.2.5
  • Misstear B., Banks D., Clark L., 2006, Water wells and boreholes, Wiley Inc. Hoboken, New Jersey, USA, 513 pp.
  • Moganty S.S., Jayaprakash N., Nugent J.L., Shen J., Archer L.A., 2010, Ionic-liquid-tethered nanoparticles: hybrid electrolytes, Angewandte Chemie, 49 (48), 9158-9161, DOI: 10.1002/anie.201004551
  • Muraoka M., Gillett S.L., Bell T.W., 2001, Redox-switchable materials, US Patent application US2005/0227071 A1, priority date 28 December 2001
  • Otte K., Schmahl W.W., Pentcheva R., 2012, Density functional theory study of water adsorption on FeOOH surface, Surface Science, 606 (21-22), 1623-1632, DOI: 10.1016/j.susc.2012.07.009
  • Pandey A., 2013, Environmental impacts of canal irrigation in India, Mediterranean Journal of Social Sciences, 4 (11), 138-143, DOI: 10.5901/mjas.2013.v4n11p138
  • Panta S., Flowers T., Lane P., Doyle R., Haros G., Shaala S., 2014, Halophyte agriculture: success stories, Environmental and Experimental Botany, 107, 71-83, DOI: 10.1016/j.envexpbot.2014.05.006
  • Perez F.R., Barrero C.A., Walker A.R.H., Garcia K.E., Nomura K., 2009, Effects of chloride concentration, immersion time and steel composition on the spinel phase formation, Materials Chemistry and Physics, 117 (1), 214-223, DOI: 10.1016/j.matchemphys.2009.05.045
  • Pourbaix M., 1974, Atlas of electrochemical equilibria in aqueous solutions, NACE International, Cebelcor, USA, 664 pp.
  • Rahil M., Hajjeh H., Qanadillo A., 2013, Effect of saline water application through different irrigation intervals on tomato yield and soil properties, Open Journal of Soil Science, 3 (3), 143-147, DOI: 10.4236/ojss.2013.33016
  • Raluy R.G., Serra L., Uche J., Valero A., 2004, Life-cycle assessment of desalination technologies integrated with energy production systems, Desalination, 167, 445-458, DOI: 10.1016/j.desal.2004.06.160
  • Rasel H.H., Hasan M.R., Ahmed B., Miah M.S.U., 2013, Investigation of soil and water salinity, its effect on crop production and adaptation strategy, International Journal of Water Resources and Environmental Engineering, 5 (8), 475-481, DOI: 10.5897/ijwree2013.0400
  • Ruby C., Aissa R., Gehin A., Cortot J., Adelmoula M., Genin J.-M., 2006, Green rusts synthesis by coprecipitation of FeII-FeIII ions and mass balance diagram, Comptes Rendus Geoscience, 338 (6-7), 420-432, DOI: 10.1016/j.crte.2006.04.008
  • Savoie J.G., Kent D.B., Smith R.L., LeBlanc D.R., Hubble D.W., 2004, Changes in ground-water quality near two granular iron permeable reactive barriers in a sand and gravel aquifer, Cape Cod, Massachusetts, 1997-2000, Water-Resources Investigation Report 03-4309, US Geological Survey, Reston, Virginia, USA, 77 pp., available at http://pubs.usgs.gov/wri/wri034309/pdf/wrir034309.pdf (data access 30.04.2015)
  • Shimakoshi H., Shibata K., Hisaeda Y., 2009, Molecular recognition of redox switchable bis crown moieties assembled on a dicobalt complex, Inorganic Chemistry, 48 (3), 1045-1052
  • Sorokina I.D., Dresvyannikov A.F., 2014, Synthesis and study of new complex iron-aluminium reagent for water treatment, Acta Metallomica-MEEMB, 11 (1), 23-34,
  • Sorour M., Hani H.A., Shaalan H.F., Al-Bazedi G.A., 2014, Preliminary techno-economics assessment of developed desalination/salt recovery facility based on membrane and thermal techniques, Desalination and Water Treatment, DOI: 10.1080/19443994.2014.94775
  • Tang Z., Hong S., Xiao W., Taylor J., 2006, Characteristics of iron corrosion scales under blending of ground, surface and saline waters and their impact on iron release in the pipe distribution system, Corrosion Science, 48 (2), 322-342, DOI: 10.1016/j.corsci.2005.02.005
  • Varnado C.D., Rosen E.L., Collins M.S., Lynch V.M., Bielawski C.W., 2013, Synthesis and study of olephin metathesis catalysts supported by redox switchable diaminocarbene[3] ferocenophanes, Dalton Transactions, 42 (36), 13251-13264, DOI: 10.1039/c3dt51278a
  • Vengosh A., Jackson R.B., Warner N., Darrah T.H., Kondash A., 2014, A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States, Environmental Science & Technology, 48 (15), 8334-8348, DOI: 10.1021/es405118y
  • Venkatesan R., 2014, Comparison between LTTD and RO process of sea-water desalination: an integrated economic, environmental and ecological framework, Current Science, 106 (10), 378-386
  • Warner N.R., Christie C.A., Jackson R.B., Vengosh A., 2013, Impacts of shale gas wastewater disposal on water quality in Western Pennsylvania, Environmental Science & Technology, 47 (20), 11849-11857, DOI: 10.1021/es402165b
  • WHO, 2006, Guidelines for Drinking Water Quality, World Health Organisation, Geneva, Switzerland, 564 pp., available at http://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdf (data access 30.04.2015)
  • WHO, 2011, How much water is needed in emergencies, Technical Notes on Drinking Water, Sanitation and Hygiene in Emergencies, No. 9, World Health Organisation, Geneva, available at http://www.who.int/water_sanitation_health/publications/2011/tn9_how_much_water_en.pdf (data access 30.04.2015)
  • Wilkin R.T., McNeil M.S., 2003, Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage, Chemosphere, 53 (7), 715-725, DOI: 1016/S0045-6535(03)00512-5
  • Wilkin R.T., Puls R.W., Sewell G.W., 2003, Long-term performance of permeable reactive barriers using zero-valent iron: geochemical and microbiological effects. Ground Water, 41 (4), 493-503, DOI: 10.1111/j.1745-6584.2003.tb02383.x
  • Younos T., Tulou K.E., 2005, Overview of desalination technologies, Journal of Contemporary Water Research & Education, 132 (1), 3-10, DOI: 10.1111/j.1936-704X.2005.mp132001002.x
  • Yu X., Liao Y., Oladipo I.O., 2014, Effect of salinity water irrigation on maize growth in northwest region, Journal of Chemical and Pharmaceutical Research, 6 (1), 300-305
  • Yue J., Jiang X., Yu A., 2011, Experimental and theoretical study on the beta-FeOOH nanorods: growth and conversion, Journal of Nanoparticle Research, 13, 3961-3974, DOI: 10.1007/s11051-011-0320-4
  • Yurtseven E., Ozturk H.S., Avci S., 2014, Mass balance criteria in soil salinity management: different irrigation water qualities and leaching ratio, Journal of Agricultural Science, 20 (2), 103-111, DOI: 10.15832/tbd.91886
  • Zekri S., Al-Maktoumi A.K., Abdalla O.A.E., Akil J., Charabi Y., 2014, Hydrological and economical simulations: emergency water supply for Muscat, Water Policy, 16, 340-357, DOI: 0.2166/wp.2013.187
  • Zotalis K., Dialynas E.G., Mamassis N., Angelakis A.N., 2014, Desalination technologies: Hellenic Experience, Water, 6 (5), 1134-1150, DOI: 10.3390/w6051134

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-011e3820-ea62-4579-af8d-99cef651d2a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.