EN
INTRODUCTION: Extracellular potentials, such as the Local Field Potentials (LFPs), are routinely measured in numerous electrophysiological experiments. LFP can carry valuable information about the electric properties of the tissue, however analysis of the recorded signal is usually a complex task. Apart from basic preparation, such as bandpass filtering and artifact removal, many other analytic methods have been proposed for the LFP study. Here we discuss methods for estimation of electric sources and sinks in brain tissue (Current Source Density, CSD) and methods to estimate connectivity in small networks, and their utility in analysis of cortical recordings in rats. AIM(S): Comparison of the effective connectivity and the structure of sinks and sources in cortical columns during whisker stimulations. METHOD(S): Analytic methods: kernel Current Source Density and Modular Connectivity Factorization (MCF) applied to LFP recordings and simulated data from cortical column. Experimental methods: Simultaneous multielectrode in vivo recordings from both hemispheres of the rats brain. RESULTS: Preliminary studies show different distribution of the current sources in contralateral to ipsilateral hemisphere during whisker stimulation in rats. Comparison of the hemispheres from deprived rats shows an extension of the whisker representation in the barrel cortex receptive field. CONCLUSIONS: KCSD method showssignificant differences in current sources localization in contralateral to ipsilateral hemisphere. Modular Connectivity Factorization method applied to LFP recordings from simulated data separates cortical column layers into interpretable modules. Physiological interpretation of the results needs further validation on the cortical column model. FINANCIAL SUPPORT: Instytut Biologii Doświadczalnej im. Marcelego Nenckiego Polska Akademia Nauk, Warsaw, Poland, Uniwersytet Warszawski, Warsaw, Poland