PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 53 | 3 |
Tytuł artykułu

Strefa hyporeiczna - naturalny filtr w rzece

Autorzy
Treść / Zawartość
Warianty tytułu
EN
Hyporheic zone - natural filter in a river
Języki publikacji
PL
Abstrakty
EN
Hyporheic zone is a part of a fluvial system. The term “hyporheic’originates form Greek: hypo is a prefix meaning “below”, the noun rheos means “stream”. Hyporheic zone is a transitional ecotone between surface and groundwater in porous-bed rivers, characterized by the water exchange, which affects water quality. The lateral extension of a hyporheic zone below the riparian zone is known as a parafluvial zone (Fig. 1) Hyporheic ecology is a branch of a young discipline known as a groundwater ecology, which studies the interactions between groundwater organisms and their environment, both aquifer and connected terrestrial system. This discipline has been developing very intensively from the 1990s. Then the first papers on the surface water/groundwater ecotone concept were published. The ecotone approach to groundwater ecology was a turning point because surface and groundwaters were considered separately before, e.g. in 1975 in Schlitz, Germany, took place “International Colloquium on Niphargus, Gammarus and groundwater ecology”, continued in next years in Blacksburg (USA) and Łódź (Poland).The simplified mechanisms of a hyporheic filtration are as follows. The riverine surface water transporting different chemical substances (organic matter, oxygen), infiltrates into the hyporheic interstices (hyporheal), moves through and out of it in a downstream direction (Fig. 2). Three mechanisms which alter water quality occur in the hyporheic zone: physical filtration by the sediment matrix, biological filtration by the microbial biofilm and chemical filtration by reactions such as mineral and redox processes. Hyporheic interstitial organisms (hyporheos): bacteria, fungi, meio- and macrofauna, use an organic matter input as a source of energy, utilizing it to the carbon dioxide and water. There is lack of information concerning efficiency of hyporheic filtration. The problem is interesting not only from the scientific point of view but also has practical implications, especially when taking into consideration that quality of the exploitable sources of fresh water is still getting worse. It seems that bioenergetics might be a very usefull tool which help us to find the answer for a key question: how many organic matter hyporheic organisms are able to utilize? The Vistula’s River sand banks will be a proper study area. It is expected that sand banks can play an important role in the river self-purification processes in the sense of an organic matter utilization. Studies carried out in a Baltic Sea sandy beach showed that coastal sands are very active heterotrophic systems and can exhibit high mineralization rates (Figs. 3,4). If it is proved that sand bank are efficient natural filters, one more argument against the Vistula River regulation will be gained. One has to remember that the natural uniqueness of the Vistula River is endangered by the planned river regulation and land use.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
53
Numer
3
Opis fizyczny
s.139-151,rys.,bibliogr.
Twórcy
autor
  • Centrum Badań Ekologicznych, Polska Akademia Nauk, Dziekanów Leśny, 05-092 Łomianki
Bibliografia
  • Boulton A. J. 2000 - River ecosystem health down under: assessing ecological condition in riverine groundwater zones in Australia - Ecosyst. Health, 6: 108-118.
  • Bourg A. C. M., Bertin C. 1993 - Biogeochemical processes during the infiltration of river water into an alluvial aquifer - Environ. Sci. Technol. 27: 661-666.
  • Brunke M., Gonser T. 1997 - The ecological significance of exchange processes between rivers and groundwater - Freshw. Biol. 37:1-33.
  • Claret C., Marmonier P., Boisser J.-M., Fontvielle D., Blanc P. 1999a - Nutrient transfer between parafluvial interstitial water and river water: influence of gravel bar heteregoneity - Freshw. Biol. 37: 657-670.
  • Claret C., Marmonier P., Dole-Olivier M. J., Creuze des Chatelliers M., Boulton A. J., Castelia E. 1999b-A functional classification of interstitial invertebrates: supplementing measures of biodiversity using species traits and habitat affinities - Arch. Hydrobiol. 4: 385-403.
  • Danielopol D. L. 1982 - Three groundwater Candoninae (Ostracoda) from Romania - Int. J. Speleol. 12: 83-102.
  • Danielopol D. L. 1994 - What can we expect from groundwater ecologists? (W: Proc. Second Int. Groundwat. Ecol. Conf. Red. J. A. Stanford, H. M. Valett) - American Water Resources Association, Herndon, Wirginia, 13-20.
  • Dent C. L., Schade J. J., Grimm N. B., Fisher S. G. 2000 - Subsurface influences on surface biology (W: Streams and groundwaters. Red. J. B. Jones, P. J. Mulholland) - Academic Press, San Diego, 381-404.
  • Fiebeg D. M,, Lock M. A. 1991 - Immobilization of dissolved organic matter from groundwater discharging through the stream bed - Freshw. Biol. 26: 45-55.
  • Ghiorse W. C., Wilson J. T. 1988 - Microbial ecology of the terrestrial subsurface - Adv. Appl. Microbiol. 33: 107-177.
  • Gibert J., Dole-Olivier M.-J., Marmonier P., Vervier P. 1990 - Surface water-groundwater ecotones (W: The ecology and management of aquatic-terrestial ecotones. Red. R. J. Naiman, H. Decamps) - UNESCO-MAB and Parthenon Publishing Group, Paris, Carnforth, 199-216.
  • Gibert J,, Marmonier P,, Vanek V., Plénet S. 1995-Hydrological exchange and sediment characteristics in a riverbank: Relationship between heavy metals and invertebrate community structure - Can. J. Fish. Aquat. Sci. 52: 2084-2097.
  • Hancock P. 2002 - Human impacts on the stream-groundwater exchange zone - Environ. Manage. 29: 763-781.
  • Hancock P., Boulton A. J., Humphreys W. F. 2005 - Aquifers and hyporheic zones: Towards an ecological understanding of groundwater - Hydrogeol J. 13: 98-111.
  • Harvey J. W., Bencala K. E. 1993 - The effect of stream bed topography on surface- -subsurface water exchange in mountain catchments - Water Resour. Res. 29: 89-98.
  • Holmes R. M., Fisher S. G., Grimm N. B. 1994 - Parafluvial nitrogen dynamics in a desert stream ecosystem - J, North. Am. Benthol. Soc. 13: 468-478.
  • Kotwicki L. 2004 - Meiofauna europejskich plaż piaszczystych - Pr. dokt., Centrum Badań Ekologicznych PAN, Dziekanów Leśny.
  • Marmonier P., Dole-Olivier M.-J., Creuzć des Chätelliers M. 1992 - Spatial distribution of interstitial assemblages in the floodplain of the Rhone River - Regul, Rivers Res. & Manage. 7: 75-82.
  • Orghidan T. 1959 - A new habitat of the underground water, the hyporheic biotope - Arch. Hydrobiol. 55: 392-414.
  • Rutherford J. E., Hynes H. B. N. 1987 - Dissolved organic carbon in streams and groundwater - Hydrobiologia, 154: 33-48.
  • Savant S. A., Reible D. D., Txibodeaux L. J. 1987 - Convective transport within stable river sediments - Water Resour. Res. 23: 1763—1768.
  • Schwoerbel J. 1961- Über die Lebensbedsedingungen und die Besiedlung des hyporheischen Lebensraumes - Arch. Hydrobiol. Suppl. 25:182-214.
  • Sophocleous M. 2002 - Interactions between groundwater and surface water: the state of the science - Hydrogeol. J. 10: 52-67.
  • Stanford J. A., Ward J. V. 1988 - The hyporheic habitat of river ecosystems - Nature, 335: 64-66.
  • Triska F. J., Kennedy V. C., Avanzino R. J., Zellweger G. W., Bencala K. E. 1989 - Retention and transport of nutrients in a third-order stream in northwestern California: Hyporheic processes - Ecology, 70:1893-1905.
  • Txibodeaux L. J., Boyle J. O. 1987 - Bed-form generated convective transport in bottom sediment - Nature, 325: 341-343.
  • Urban-Malinga B. 2003 - Przepływ energii przez ekosystem plaży bałtyckiej - Pr. dokt., Centrum Badań Ekologicznych PAN, Dziekanów Leśny.
  • Urban-Malinga B., Kotwicki L., Opaliński K, W. 1999 - Ekologiczna waloryzacja plaży bałtyckiej - studium bioenergetyczne - Działalność Naukowa PAN, Wybrane Zagadnienia, 7: 79-81.
  • Urban-Malinga В., Opaliński K. W. 1999-Vertical zonation of the total, biotic and abiotic oxygen consumption on a Baltic sandy beach - Oceanol. Stud. 28: 85-96.
  • Urban-Malinga B., Opaliński K. W. 2001 - Interstitial community oxygen consumption in Baltic sandy beach: horizontal zonation - Oceanologia, 43: 455-468.
  • Urban-Malinga B., Opaliński K. W. 2002 - Seasonal changes of interstitial community respiration in a Baltic sandy beach - Oceanol. Stud. 31: 57-70.
  • Valett H. M., Fisher S. G., Stanie E. H. 1990 - Physical and chemical characteristics of the hyporheic zone of a Sonoran Desert stream - J. North Am. Benthol. Soc. 9: 201-215.
  • Vervier P., Gibert Marmonier P., Dole-Olivieer M. J. 1992 - A perspective on the permeabiliy of the surface freshwater-groundwater ecotone - J. North Am. Benthol. Soc. 11: 93-102.
  • Wallis P. M., Hynes H. B. N., Telang S. A. 1981-The importance of groundwater in the transportation of allochtonous dissolved organic matter to the stream draining a small mountain basin - Hydrobiologia, 79: 77-90.
  • Węsławski J. M., Urban-Malinga B., Kotwicki L., Opaliński K. W., Szymelfenig M., Dutkowski M. 2000 - Sandy coastlines - are there conflicts between recreation and natural values? - Oceanol. Stud. 29: 5-15.
  • Winter T. C. 1999 - Relation of streams, lakes and wetlands to groundwater flow systems - Hydrogeol. J. 7: 28-45.
  • Wiszniewski J. 1947 - Remarques relatives aux recherches recentes sur Ie psammon deaux douces - Arch. Hydrobiol. Ryb. 12: 7-36.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-00ef9915-9673-44eb-b7ca-ca40a6e239f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.