Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 67 | 2 |

Tytuł artykułu

Brucella - virulence factors, pathogenesis and treatment

Warianty tytułu

Języki publikacji



Brucellae are Gram-negative, small rods infecting mammals and capable of causing disease called brucellosis. The infection results in abortion and sterility in domestic animals (sheeps, pigs, rams etc). Especially dangerous for humans are: Brucella melitensis, Brucella suis, Brucella abortus, and Brucella canis that trigger unspecific symptoms (flu-like manifestation). Brucella rods are introduced via host cells, by inhalation, skin abrasions, ingestion or mucosal membranes. The most important feature of Brucella is the ability to survive and multiply within both phagocytic and non-phagocytic cells. Brucella does not produce classical virulence factors: exotoxin, cytolisins, exoenzymes, plasmids, fimbria, and drug resistant forms. Major virulence factors are: lipopolysaccharide (LPS), T4SS secretion system and BvrR/BvrS system, which allow interaction with host cell surface, formation of an early, late BCV (Brucella Containing Vacuole) and interaction with endoplasmic reticulum (ER) when the bacteria multiply. The treatment of brucellosis is based on two-drug therapy, the most common combinations of antibiotics are: doxycycline with rifampicin or fluoroquinolones with rifampicin. Currently, also other methods are used to disrupt Brucella intracellular replication (tauroursodeoxycholic acid or ginseng saponin fraction A).

Słowa kluczowe








Opis fizyczny



  • Biological Threats Identification and Countermeasure Center, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Pulawy, Poland
  • Biological Threats Identification and Countermeasure Center, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Pulawy, Poland
  • Department of Didactics and Medical Simulation, Lublin Medical University, Lublin, Poland
  • Biological Threats Identification and Countermeasure Center, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Pulawy, Poland
  • Biological Threats Identification and Countermeasure Center, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Pulawy, Poland


  • Alavi S.M. and L. Alavi. 2013. Treatment of brucellosis: a systematic review of studies in recent twenty years. Caspian. J. Intern. Med. 4(2): 636–641.
  • Al Dahouk S., L.D. Sprague and H. Neubauer. 2013. New developments in the diagnostic procedures for zoonotic brucellosis in humans. Rev. Sci. Tech. 32(1): 177–188.
  • Alshaalan M.A., S.A. Alalola, M.A. Almuneef, E.A. Albanyan, H.H. Balkhy, D.A. AlShahrani and S. AlJohani. 2014. Brucellosis in children: Prevention, diagnosis and management guidelines for general pediatricians endorsed by the Saudi Pediatric Infectious Diseases Society (SPIDS). Int. J. Ped. Adolesc. Med. 1(1): 40–46.
  • Alton G.G. and J.R.L. Forsyth. 1996. Brucella, pp. 514–521. In: Baron S. (ed.). Medical Microbiology. University of Texas Medical Branch at Galveston, Galveston.
  • Andersen-Nissen E., K.D. Smith, K.L. Strobe, S.L. Barrett, B.T. Cookson, S.M. Logan and A. Aderem. 2005. Evasion of Toll-like receptor 5 by flagellated bacteria. PNAS. 102(26): 9247–9252.
  • Arayan S.T., H.L. Simborio, A.W. Reyes, H.T. Hop, W. Min and H.J. Lee. 2015. The effects of red ginseng saponin fraction-A (RGSF-A) on phagocytosis and intracellular signaling in Brucella abortus infected RAW 264.7 cells. FEMS Microbiol. Lett. 362(11). doi:10.1093/femsle/fnv070.
  • Arellano-Reynoso B., S. Lapaque, S. Salcedo, G. Briones,A.E. Ciocchini and R. Ugadle. 2005. Cyclic-1,2-glucan is a Brucella virulence factor required for intracellular survival. Nat. Immunol. 6(6): 618–625.
  • Baddour M.M. and D.H. Alkhalifa. 2008. Evaluation of three polymerase chain reaction techniques for detection of Brucella DNA in peripheral human blood. Can. J. Microbiol. 54(5): 352–357.
  • Baldi P.C. and G.H. Giambartolomei. 2013. Pathogenesis and pathobiology of zoonotic brucellosis in humans. Rev. Sci. Tech. Off. Int. Epiz. 32(1): 117–125.
  • Bandara A.B., N. Sriranganathan, G.G. Schurig and S.M. Boyle. 2007. Carboxyl-terminal protease regulates Brucella suis morphology in culture and persistence in macrophages and mice. J. Bacteriol. 187(16): 5767–5775.
  • von Bargen K., J.P. Gorvel and S.P. Salcedo. 2012. Internal affairs: investigating the Brucella intracellular lifestyle. FEMS Microbiol. Rev. 36(3): 533–562.
  • Beck B.L., L. Tabatabi and J.E. Mayfield. 1990. A protein isolated from Brucella abortus is a Cu-Zn superoxide dismutase. Biochem. 29(2): 372–376.
  • Bellaire B.H., R.M. Roop II and J.A. Cardelli. 2005. Opsonized virulent Brucella abortus replicates within nonacidic, endoplasmic reticulum-negative, LAMP-1-positive phagosomes in human monocytes. Infect. Immun. 73(6): 3702–3713.
  • Benov L.T. and I. Fridovich. 1994. Escherichia coli Expresses a Copper- and Zinc-containing Superoxide Dismutase. J. Biol. Chem. 269(41): 25310–25314.
  • Bingöl A., N. Yücemen and O. Meço. 1999. Medically treated intraspinal “Brucella” granuloma. Surg. Neur. 52(6): 570–576.
  • Bohin J.P. 2000. Osmoregulated periplasmic glucans in Proteobacteria. FEMS Misrobiol. Lett. 186(1): 11–19.
  • Boschiroli M.L., V. Foulongne and D. O’Callaghan. 2011. Brucellosis: a worldwide zoonosis. Curr. Opin. Microbiol. 4: 58–64.
  • Brown D.A. and E. London. 1998. Functions of lipid rafts in biological membranes. Annu. Rev. Cell. Dev. Biol. 14: 111–136.
  • Byndloss M.X. and R.M. Tsolis. 2016. Brucella spp. virulence factors and immunity. Annu. Rev. Anim. Biosci. 4: 111–127.
  • O’Callaghan D., C. Cazevieille, A. Allardet-Servent, M.L. Boschiroli, G. Bourg, V. Foulongne, P. Frutos, Y. Kulakov and M. Ramuz. 1999. A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol. Microbiol. 33(6): 1210–1220.
  • Cardosos P.G., G.C. Macedo, V. Azevedo and S.C. Oliveira. 2006. Brucella spp. noncanonical LPS: structure, biosynthesis, and interaction with host immune system. Microb. Cell Fact. 5: 13. doi:10.1186/1475-2859-5-13.
  • Carvalho Neta A.V., A.P.R. Stynen, T.A. Paixăo, K.L. Miranda, F.L. Silva, C.M. Roux, R.M. Tsolis, R.E. Everts, H.A. Lewin, L.G. Adams and others. 2008. Modulation of bovine trophoblastic innate immune response by Brucella abortus. Infect. Immun.76(5): 1897–1907.
  • Carvalho Neta A.V., J.P. Mol, M.N. Xavier, T.A. Paixão, A.P. Lage and R.L. Santos. 2010. Pathogenesis of bovine brucellosis. Vet. J. 184(2): 146–155.
  • Cascales E. and P.J. Christie. 2003. The versatile bacterial type IV secretion system. Nat. Rev. Microbiol. 1(2): 137–149.
  • Celli J., C. de Chastelier, D.M. Franchini, J. Pizzaro-Cerda, E. Moreno and J.P. Gorvel. 2003. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J. Exp. Med. 198(4): 545–556.
  • Celli J. 2006. Surviving inside a macrophage: the many ways of Brucella. Res. Microbiol. 157: 93–98.
  • Chaudhary A., K. Ganguly, S. Cabantous, G.S. Waldo, S.N. Micheva-Viteva, K. Nag, W.S. Hlavacek and C.S. Tung. 2012. The Brucella TIR-like protein TcpB interacts with the death domain of MyD88. Biochem. Biophys. Res. Commun. 417(1): 299–304.
  • Chen L., Q.W. Xie and C. Nathan. 1998. Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol. Cell. 1(6): 795–805.
  • Christopher S., B.L. Umapathy and K.L. Ravikumar. 2010. Brucellosis: Review on the recent trends in pathogenicity and laboratory diagnosis. J. Lab. Physicians. 2(2): 55–60.
  • Coelho A.C., J.G. Díez and A.M. Coelho. 2015. Risk Factors for Brucella spp. in Domestic and Wild Animals, pp. 2–31. In: Baddour M (ed.). Updates on Brucellosis. InTech.
  • Corbel M.J. 1997. Brucellosis: an overview. Emerg. Infect. Dis. 3(2): 213–221.
  • Delure R.M., M. Martinez-Lorenzo, P. Lestrate, I. Danese, V. Bie-larz, P. Mertens, X. De Bolle, A. Tibor, J.P. Gorvel and J.J. Letesson. 2001. Identification of Brucella spp. genes involved in intracellular trafficking. Cell Microbiol. 3(7): 487–497.
  • Del Vecchio V.G., V. Kapatral, R.J. Redkar, G. Patra, C. Mujer, T. Los, N. Ivanova, I. Anderson, A. Bhattacharyya, A. Lykidis and others. 2002. The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc. Natl. Acad. Sci. USA 99(1): 443–448.
  • Dwight D. and M.S. Bowman. 2011. Introduction to the Alpha-proteobacteria: Wolbachia and Bartonella, Rickettsia, Brucella, Ehrlichia and Anaplasma. Top. Companion Anim. Med. 26(4): 173–177.
  • Endley S., D. McMurray and T.A. Ficht. 2001. Interruption of the cydB locus in Brucella abortus attenuates intracellular survival and virulence in the mouse model of infection. J. Bacteriol. 183(8): 2454–2462.
  • Fernandez-Prada C.M., E.B. Zelazowska, M. Nikolich, T. Hadfield,R.M. Roop II, G.L. Robertson and D.L. Hoover. 2003. Interactions between Brucella melitensis and human phagocytes: Bacterialsurface O-polysaccharide inhibits phagocytosis, bacterial killing, and subsequent host cell apoptosis. Infect. Immunity. 71(4): 2110–2119.
  • de Figueiredo P., T.A. Ficht, A. Rice-Ficht, C.A. Rossetti and L.G. Adams. 2015. Pathogenesis and immunobiology of brucellosis review of Brucellae host interactions. Am. J. Pathol. 185(6): 1505–1517.
  • Franco M.P., M. Mulder, R.H. Gilman and H.L. Smits. 2007. Human brucellosis. Lancet. Infect. Dis. 7(12): 775–786.
  • Fugier E., S.P. Salcedo, C. de Chastellier, M. Pophillat, A. Muller,V. Arce-Gorvel, P. Fourquet and J.P. Gorvel. 2009. The glyceraldehyde-3-phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication. PLoS Path. 5(6):e1000487. doi:10.1371/journal.ppat.1000487.
  • Galińska E.M. and J. Zagórski. 2013. Brucellosis in humans – etiology,diagnostics, clinical forms. Ann. Agric. Environ. Med. 20(2): 233–238.
  • Gee J.M., M.E. Kovach, V.K. Grippe, S. Hagius, J.V. Walker,P.H. Elzer and others. 2004. Role of catalase in the virulence of Brucella melitensis in pregnant goats. Vet. Microbiol. 102(1–2): 111–115.
  • Gee J.M., M.E. Kovach, V.K. Grippe, S. Hagius, J.V. Walker, P.H. Elzer and R.M. Roop 2nd. 2005. The Brucella abortus Cu, Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macrophages and wild-type virulence in experimentally infected mice. Infect. Immun. 73(5): 2873–2880.
  • Gerasu M.A. and G.M. Kassa. 2016. A review on diagnostic methods of brucellosis. Vet. Sci. Tech. 7:3. doi:10.4172/2157-7579.1000323.
  • Godfroid J., B. Garin-Bastuji, C. Saegerman and J.M. Blasco. 2013. Brucellosis in terrestrial wildlife. Rev. Sci. Tech. 32(1): 27–42.
  • Gomez G., L.G. Adams, A. Rice-Ficht and T.A. Ficht. 2013. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis. Front. Cell. Infect. Microbiol. 3:17. doi:10.3389/fcimb.2013.00017.
  • Gopal R.K. and S. Elumalai. 2017. Industrial production of Superoxide Dismutase (SOD): A mini review. J. Probe. Health. 5:3. doi:10.4172/2329-8901.1000179.
  • Gorvel J. and E. Moreno. 2002. Brucella intracellular life: from invasion to intracellular replication. Vet. Microbiol. 90(1–4): 281–297.
  • Gupte S. and T. Kaur. 2015. Diagnosis of Human Brucellosis. J. Top. Dis. 4:1. doi:10.4185/2329-891X.1000185.
  • Guzmán-Verri C., E. Chaves-Olarte, C. von Eichel-Streiber, I. López-Goñi, M. Thelestam, S. Arvidson, J.P. Gorvel and E. Moreno. 2001. GTPases of the Rho subfamily are required for Brucella abortus internalization in nonprofessional phagocytes. J. Biol. Chem. 276(48): 44435–44443.
  • Gwida M., S. Al Dahouk, F. Melzer, U. Rősler, H. Neubauer andH. Tomaso. 2010. Brucellosis – regionally emerging zoonotic disease? Croat. Med. J.51(4): 289–295.
  • He Y. 2012. Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics. Front. Cell. Infect. Microbiol. 2:2. doi:10.3389/fcimb.2012.00002.
  • Huy T.X., A.W. Reyes, H.T. Hop, L.T. Arayan, W. Min andH.J. Lee. 2017. Intracellular trafficking modulation by ginsenoside Rg3 Inhibits Brucella abortus uptake and intracellular survival within RAW 264.7 cells. J. Microbiol. Biotechnol. 27(3): 616–623.
  • Iowa State University. The Centerfor Food Security & Public Health. 2009. Ovine and Caprine Brucellosis: Brucella melitensis.
  • Kagan J.C. and R. Medzhitov. 2006. Phosphoinositide-mediated adaptor recruitment controls toll-like receptor signaling. Cell. 125(5): 943–955.
  • Kim S. 2015. The interaction between Brucella and the host cell in phagocytosis, pp. 45–60. In: Baddour M. (ed.). Updates on Brucellosis. InTech, Jinju.
  • Kőhler S., V. Foulongne, S. Ouahrani-Bettache, G. Bourg, J. Teyssler, M. Ramuz and J.P. Liautard. 2002. The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc. Natl. Acad. Sci. USA. 99(24): 15711–15716.
  • Kusumawati A., C. Cazevieille, F. Porte , S. Bettache, J.P. Liautard and J. Widada. 2000. Early events and implication of F-actin and annexin I associated structures in the phagocytic uptake of Brucella suis by the J-774A.1 murine cell line and human monocytes. Microb. Pathog. 28(6): 343–352.
  • Lapaque N., I. Moriyon, E. Moreno and J.P. Gorvel. 2005. Brucella lipopolysaccharide acts as a virulence factor. Curr Opin Microbiol. 8(1): 60–66.
  • Lavigne J.P., G. Petey, F.J. Sangari, G. Bourg, M. Ramuz, D. O’Cal-laghan, S. Michaux-Charachon. 2005. Identification of a new virulence factor, BvfA, in Brucella suis. Infect. Immun. 73(9): 5524–5529.
  • Loiser-Meyer S., M.P.J. de Bagüés, S. Köhler, J.P. Liautard and V. Jubier-Maurin. 2005. Differential use of the two high-oxygen-affinity terminal oxidases of Brucella suis for in vitro and intramacrophagic multiplication. Infect. Immun. 73(11): 7768–7771.
  • López-Goñi I., C. Guzmán-Verri, L. Manterola, A. Sola-Landa, I. Moriyón, E. Moreno. 2002. Regulation of Brucella virulence by thetwo – component system BvrR/BvrS. Vet. Microbiol. 90(1–4): 329–339.
  • Manterola L., C. Guzmán-Verri, E. Chaves-Olarte, E. Barquero-Calvo, M.J. de Miguel, I. Moriyón, M.J. Grilló, I. López-Goñi and E. Moreno. 2007. BvrR/BvrS-Controlled Outer Membrane Proteins Omp3a and Omp3b are not essential for Brucella abortus virulence. Infect. Immun. 75(10): 4867–4874.
  • Martin D.W., J.E. Baumgartner, J.M. Gee, E.S. Anderson and R.M. Roop II. 2012. SodA is a major metabolic antioxidant in Brucella abortus 2308 that plays a significant, but limited, role in the virulence of this strain in the mouse model. Microbiology. 158(Pt7): 1767–1774.
  • Martínez-Nūñez C., P. Altamirano-Silva, F. Alvarado-Guillén,E. Moreno, C. Guzmán-Verri and E. Chaves-Olarte. 2010. The Two-Component System BvrR/BvrS regulates the expression of the type IV secretion system VirB in Brucella abortus. J. Bacteriol. 192(21): 5603–5608.
  • Megid J., L.A. Mathias and C.A. Robles. 2010. Clinical manifestations of brucellosis in domestic animals and humans. Op. Vet. Sci. J. 4: 119–126.
  • Mizak L., R. Gryko, S. Parasion and M. Kwiatek. 2014. Brucellosis – a worldwide zoonosis (in Polish). Życ. Wet. 89(1): 35–40.
  • Mizuno T. and I. Tanaka. 1997. Structure of the DNA-binding domain of the OmpR family of response regulators. Mol. Microbiol. 24(3): 665–667.
  • Mol J.P.S., E.A. Costa, A.F. Carvalho, Y-H. Sun, R.M. Tsolis, T.A. Paixăo and R.L. Santos. 1995. Molecular biology of microbial ureases. Microbiol. Rev. 59(3): 451–480.
  • Mol J.P.S., E.A. Costa, A.F. Carvalho, Y-H. Sun, R.M. Tsolis, T.A. Paixão and others. 2014. Early transcriptional responses of bovine chorioallantoic membrane explants to wild type, ΔvirB2 or ΔbtpB Brucella abortus infection. PLoS One. 9(9): e108606. doi:10.1371/journal.pone.0108606.
  • Naghadi N., H. Assanzad-Azar and A. Delpisheh. 2016. The most important medicinal plants for treatment of brucellosis. J. Prev. Epi. 1(2): e20.
  • Naroeni A. and F. Porte. 2002. Role of Cholesterol and the Ganglioside GM 1 in entry and short-term survival of Brucella suis in murine macrophages. Infect. Immun. 70(3): 1640–1644.
  • Newman R.M., P. Salunkhe, A. Godzik and J.C. Reed. 2006. Identification and characterization of a novel bacterial virulence factor that shares homology with mammalian toll/interleukin-1 receptor family proteins. Infect. Immun. 74(1): 594–601.
  • Oliveira S.C., F.S. de Oliviera, G.C. Macedo, L.A. de Almeida and N.B. Carvalho. 2008. The role of innate immune receptors in the control of Brucella abortus infection: Toll-like receptors and beyond. Microbes Infect. 10(9): 1005–1009.
  • Osman A.Y., F.F. Jesse, A. Abdul Kadir and A.A. Saharee. 2016. The epidemiology and immunopathophysiology of brucellosis in small ruminant. PJSRR. 2(1): 11–21.
  • Pappas G., P. Papadimitriou, N. Akritidis, L. Christou and E. Tsianos. 2006. The new global map of human brucellosis. Lancet. Infect. Dis. 6(2): 91–99.
  • Perkins S.D., S.J. Smither and H.S. Atkins. 2010. Towards a Brucella vaccine for humans. FEMS Microbiol. Rev. 34: 379–394.
  • Pizarro-Cerdá J., E. Moreno and J.P. Gorvel. 2000. Invasion and intracellular trafficking of Brucella abortus in nonphagocytic cells. Microbes Infect. 2(7): 829–835.
  • Pizarro-Cerdá J., S. Méresse, R.G. Parton, G. van der Goot,A. Sola-Landa, I. López-Goñi, E. Moreno and J.P. Gorvel. 1998. Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect. Immun. 66(12): 5711–5724.
  • Porte F., A. Naroeni, S.Ouahrani-Bettache and J.P. Liautard. 2003. Role of the Brucella suis lipopolysaccharide O antigen in phagosomal genesis and in inhibition of phagosome-lysosome fusion in murine macrophages. Infect. Immun. 71(3): 1481–1490.
  • Radhakrishnan G.K., Q. Yu , J.S. Harms and G.A. Splitter. 2009. Brucella TIR domain-containing protein mimics properties of the toll-like receptor adaptor protein TIRAP. J. Biol. Chem. 284(15): 9892–9898.
  • Ranjbar M. 2015. Treatment of brucellosis, pp. 171-184. In: Baddour M. (ed.). Updates on Brucellosis. InTech, Teheran.
  • Reyes A.W., H.L. Simborio, H.T. Hop, L.T. Arayan, W.G. Min, H.J. Lee, M.H. Rhee, H.H. Chang and S. Kim. 2016. Inhibitory effect of red ginseng acidic polysaccharide from Korean red ginseng on phagocytic activity and intracellular replication of Brucella abortus in RAW 264.7 cells. J. Vet. Sci. 17(3): 315–321.
  • Rubach M.P., J.E. Halliday, S. Cleaveland and J.A. Crump. 2013. Brucellosis in low-income and middle-income countries. Curr. Opin. Infect. Dis. 26(5): 404–412.
  • Salcedo S.P., M.I. Marchesini, C. Degos, M. Terwagne, K. Von Bargen, H. Lepidi, C.K. Hermann, T.L. Santos Lacerda, P.R. Imbert, P. Pierre and others. 2013. BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions. Front. Cell. Infect. Microbiol. 3:28. doi:10.3389/fcimb.2013.00028.
  • Sangari F.J. and J. Agűero. 1996. Molecular basis of Brucella pathogenicity: an update. Microbiologia. 12(2): 207–218.
  • Sangari F.J., A. Seoane, M.C. Rodriguez, J. Agüero and J.M. Garcia Lobo. 2007. characterization of the urease operon of Brucella abortus and assessment of its role in virulence of the bacterium. Infect. Immun. 75(2): 774–780.
  • Scholz H.C., S. Revilla-Fernández, S. Al Dahouk, J.A. Hammerl, M.S. Zygmunt, A. Cloeckaert, M. Koylass, A.M. Whatmore,J. Blom, G. Vergnaut and others. 2016. Brucella vulpis sp. nov., isolated from mandibular lymph nodes of red foxes (Vulpes vulpes). Int. J. Syst. Evol. Microbiol. 66(5): 2090–2098.
  • Seleem M.N., S.M. Boyle and N. Sriranganathan. 2008. Brucella: A pathogen without classic virulence genes. Vet. Microbiol. 129(1–2): 1–14.
  • Sengupta D., A. Koblansky, J. Gaines, T. Brown, A.P. West and D. Zhang. 2010. Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter, MAL. J. Immunol. 184(2): 956–964.
  • Skalsky K., D. Yahav, J. Bishara, S. Pitlik, L. Leibovici and M. Paul. 2008. Treatment of human brucellosis: systematic review and meta-analysis of randomised controlled trials. BMJ. 336(7646): 701–704.
  • Smith J.A., M. Khan, D.D. Magnani, J.S. Harms, M. Durward, G.K. Radhakrishnan. 2013. Brucella induces an unfolded protein response via TcpB that supports intracellular replication in macrophages. PLoS Path. 9(12): e1003785. doi:10.1371/journal.ppat.1003785.
  • Sola-Landa A., J. Pizarro-Cerdá, M.J. Grilló, E. Moreno, I. Moriyón and J.M. Blasco. 1998. A two-component regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence. Mol. Microbiol. 29(1): 125–138.
  • Solís J., G. del Pozo and J. Solera. 2015. Treatment of human brucellosis-review of evidence from clinical trials, pp. 186–189. In: Baddour M. (eds). Updates on Brucellosis. InTech, Villarrobledo, Albacete.
  • Starr T., T.W. Ng, T.D. Wehrly, L.A. Knodler and J. Celli. 2008. Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment. Traffic. 9(5): 678–694.
  • Stevanin T.M., J.W.B. Moir and R.C. Read. 2005. Nitric oxide detoxification systems enhance survival of Neisseria meningitidis in human macrophages and in nasopharyngeal mucosa. Infect. Immun. 73(6): 3322–3329.
  • Stock J.B., M.G. Surette, M. Levit and P. Park. 1995. Two-component siganl transduction systems: structure-function relation-ships and mechanism of catalysis, pp. 25–51. In: Hoch J.A. and T.J. Silhavy (eds). Two Component Signal Transduction. ASM Press, Washington, D.C.
  • Tan K.K., Y.C.Tan, L.Y. Chang, K.W. Lee, S.S. Nore, W.Y. Yee, M.N.M. Isa, F.L. Jafar, C.C. Hoh and S. AbuBakar. 2015. Full genome SNP-based phylogenetic analysis reveals the origin and global spread of Brucella melitensis. BMC Genomics. 16(1):93. doi:10.1186/s12864-015-1294-x.
  • Uematsu S. and S. Akira. 2008. Toll-Like Receptors (TLRs) and their ligands. Handb. Exp. Pharmacol. (183): 1–20.
  • Waterman-Storer C.M., R.A. Worthylake, B.P. Liu, K. Burridge and E.D. Salmon. 1999. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nat. Cell. Biol. 1(1): 45–50.
  • Whatmore A.M., N. Davison, A. Cloeckaert, S. Al Dahouk,M.S. Zygmunt, S.D. Brew, L.L. Perrett, M.S. Koylass, G. Vergnaud, C. Quance and others. 2014. Brucella papionis sp. nov., isolated from baboons (Papio spp.). Int. J. Syst. Evol. Microbiol. 64(Pt12): 4120–4128.
  • Viadas C., M.C. Rodríguez, F.J. Sangari, J.P. Gorvel, J.M. Garcıía-Lobo and I. López-Goñi. 2010. Transcriptome Analysis of the Brucella abortus BvrR/BvrS Two-Component Regulatory System. PLoS ONE. 5(4): e10216. doi:10.1371/journal.pone.0010216.
  • Xavier M.N., T.A. Paixao, A.B. den Hartigh, R.M. Tsolis and R.L. Santos. 2010. Pathogenesis of Brucella spp. Op. Vet. Sci. J. 4: 109–118.
  • Yang X., J.A. Skyberg, L. Cao, B. Clapp, T. Thornburg andD.W. Pascual. 2013. Progress in Brucella vaccine development. Front. Biol. 8(1): 60–77.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.