PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 13 | 2 |

Tytuł artykułu

The effect of chilling temperature on germination and early growth of domestic and Canadian soybean (Glycine max (L.) Merr.) cultivars

Treść / Zawartość

Warianty tytułu

PL
Wpływ temperatury chłodowej na kiełkowanie i wczesny wzrost krajowych i kanadyjskich odmian soi (Glycine max (L.) Merr.)

Języki publikacji

EN

Abstrakty

EN
Low positive temperature, has an inhibiting effect on growth, development and other physiological processes of cold-sensitive plants which include soybean. An experiment in Petri dishes investigated the effect of temperature: 28/28°C (control), 10/28°C, 28/10°C, and 10/10°C (imbibition/germination), on germination of seeds of 8 soybean cultivars. Another experiment, carried out using pot cultures, investigated the response of 2-week soybean plants of the same cultivars to a 6-day chilling period. The following temperatures were used: 25/20°C (control), 25/0°C, 10/0°C (day/night). Both experiments tested the response of 6 domestic soybean cultivars (‘Aldana’, ‘Jutro’, ‘Progres’, ‘Mazowia’, ‘Nawiko’, and ‘Augusta’) and 2 Canadian cultivars (‘OAC Vision’, ‘Dorothea’) to chilling. The obtained results showed that a temperature of 10°C used during germination (28/10°C), and even to a larger extent during imbibition and germination (10/10°C), clearly reduced the speed of germination, percentage of germinated seeds, and radicle length relative to the control, but it increased catalase activity in sprouts. A chilling temperature of 25/0°C and 10/0°C (day/night) significantly increased leaf electrolyte leakage, free proline content and catalase activity relative to the control, but it decreased the photosynthetic rate and total plant leaf area. Seeds and seedlings of cvs. ‘Jutro’ and ‘Nawiko’ were generally the least sensitive to chilling, while ‘Aldana’ and ‘Dorothea’ were the most sensitive.
PL
Niska dodatnia temperatura wpływa hamująco na wzrost, rozwój i inne procesy fizjologiczne roślin chłodowrażliwych, do których należy soja. W doświadczeniu prowadzonym na płytkach Petriego badano wpływ temperatury 28/28°C (kontrola), 10/28°C, 28/10°C i 10/10°C (pęcznienie/kiełkowanie) na przebieg procesu kiełkowania nasion 8 odmian soi. Natomiast w doświadczeniu prowadzonym metodą kultur wazonowych badano reakcję 2-tygodniowych roślin soi tych samych odmian na 6-dniowy okres chłodu. Zastosowano następujące temperatury: 25/20°C (kontrola), 25/0°C, 10/0°C (dzień/noc). W obu doświadczeniach testowano reakcję na chłód 6 krajowych (Aldana, Jutro, Progres, Mazowia, Nawiko, Augusta) i 2 kanadyjskich (OAC Vision, Dorothea) odmian soi. Na podstawie uzyskanych wyników stwierdzono, że temperatura 10°C zastosowana w okresie kiełkowania 28/10°C), a szczególnie w okresie pęcznienia i kiełkowania (10/10°C), wyrażanie zmniejszyła względem kontroli szybkość kiełkowania, procent wykiełkowanych nasion i długość wytworzonego korzenia zarodkowego, a zwiększyła aktywność katalazy w kiełkach. Temperatura chłodowa 25/0°C i 10/0°C w istotny sposób zwiększyła względem kontroli wypływ elektrolitów z liści, zawartość wolnej proliny i aktywność katalazy, a obniżyła intensywność fotosyntezy i łączną powierzchnię liści na roślinach. Najmniej wrażliwe na chłód były nasiona i siewki odm. Jutro i Nawiko, a najbardziej wrażliwe Aldany i Dorothea.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

13

Numer

2

Opis fizyczny

p.31-43,ref.

Twórcy

autor
  • Department of Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
autor
  • University of Life Sciences in Lublin, Poland

Bibliografia

  • Aebi H., 1984. Catalase in vitro. Methods. Enzymol. 105, 121–126.
  • Ait Barka E., Audran J.C., 1997. Response of champenoise grapevine to low temperatures: Changes of shoot and bud proline concentrations in response to low temperatures and correlations with freezing tolerance. J. Hortic. Sci. Biotechnol. 72, 577–582.
  • Apostolova P., Yordanova R., Popova L., 2008. Response of antioxidative defence system to low temperature stress in two wheat cultivars. Gen. Appl. Plant Physiol. 34(3–4), 281–294.
  • Bates L.S., Waldren R.R., Teare J.D., 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207
  • Bączek-Kwinta R., Hyrlicka A., Maślak J., Oleksiewicz A., Serek B., 2004. Porównanie reakcji bazylii właściwej i melisy lekarskiej na różne stresy Środowiskowe. Zesz. Probl. Post. Nauk Roln. 496, 537–544.
  • Bączek-Kwinta R., Kościelniak J., 1999. Wpływ ogrzewania w czasie długotrwałego chłodu na aktywność niektórych enzymatycznych przeciwutleniaczy w liściach mieszańców kukurydzy. Zesz. Probl. Post. Nauk Roln. 469, 89–95.
  • Bharati M.P., Lawn R.J., Byth D.E., 1983. Effects of seed hydration – dehydration pre-treatment on germination of soybean lines at sub-optimal temperatures. Aust. J. Exp. Agric. Anim. Husb. 23, 309–317.
  • Borowski E., Kozłowska L., Blamowski Z.K., 1997. Reakcja roślin ogórka traktowanych paklobutrazolem na okresowe działanie chodu. Annales UMCS, sec. EEE, Horticultura 5, 201–209.
  • Borowski E., Blamowski Z.K., Kozłowska L., 1998. Wzrost i fizjologiczne reakcje na chłód roślin papryki słodkiej poddanych działaniu paklobutrazolu. Annales UMCS, sec. EEE, Horticultura 6, 129–135.
  • Borowski E., Blamowski Z.K., 2009. The effects of triacontanol ‘TRIA’ and Asahi SL on te development and metabolic activity of sweet basil (Ocimum basilicum L.) plants treated with chilling. Folia Hort. 21/1, 39–48.
  • Caulfield F., Bunce J.A., 1988. Comparative responses of photosynthesis to growth temperature in soybean (Glycine max (L.) Merill) cultivars. Can. J. Plant Sci. 68, 419–425.
  • Chen W.P., Li P.H., 2002. Membrane stabilization by abscisic acid under cold aids proline in alleviating chilling injury in maize (Zea mays L.) cultured cells. Plant Cell Environ. 25, 955–962.
  • Dörffling K., Dörffling H., Lesselich G., Luck E., Zimmermann C., Melz G., Jürgens H.U., 1997. Heritable improvement of frost tolerance in winter wheat by in vitro-selection of hydroxyproline-resistant proline overproducing mutants. Euphytica 93(1), 1–10.
  • Graninetti A., Cantoni M., Lorenzoni C., Salamini F., Marocco A., 1993. Altered levels of antioxidant enzymes associated with two mutations in tomato. Physiol. Plant. 89, 1, 157–164.
  • Heerden P.D.R., Krüger G.H.J., 2002. Separately and simultaneously induced dark chilling and drought stress effect on photosynthesis, proline accumulation and antioxidant metabolism in soybean. J. Plant Physiol. 159, 1077–1086.
  • Heerden P.D.R., Tsimilli M.M., Krüger G.H.J., Strasser R.J., 2003a. Dark chilling effects on soybean genotypes during vegetative development; parallel studies of CO2 assimilation, chlorophyll a kinetics O-J-I-P and nitrogen fixation. Physiol. Plant. 117(4), 476–491.
  • Heerden P.D.R., Krüger G.H.J., Loveland J.E., Parry M.A.J., Foyer C.H., 2003b. Dark chilling imposes metabolic restrictions on photosynthesis in soybean. Plant Cell Environ. 26, 323–337. Huang C.-H., Yang C.-M., 1995. Use of Weibull function to quantify temperature effect on soybean germination. Chinese Agron. J. 5, 25–34.
  • Jian Ling Cheng, Lu Cun Fu, Li Ji Hong, Li Paul H., 2005. Increment of chilling tolerance and its physiological basis in chilling – sensitive corn sprouts and tomato seedlings after cold – hardening at optimum temperatures. Acta Agron. Sin. 38(8), 971–976.
  • Kang H.M., Saltveit M.E., 2002. Effect of chilling on antioxidant enzymes and DDPH – radical scavenging activity of high- and low-vigour cucumber seedling radicles. Plant Cell Environ. 25, 1233–1238.
  • Koc E., Islek C., Üstün A.S., 2010. Effect of cold on protein, proline, phenolic compounds and chlorophyll content of two pepper (Capscicum annum L.) G.U. J. Sci. 23(1), 1–6.
  • Kościelniak J., 1993. Wpáyw nastĊpczy temperatur chłodowych w termoperiodyzmie dobowym na produktywnoĞü fotosyntetyczną kukurydzy (Zea mays L.). Zesz. Nauk. AR Kraków, Rozpr. hab. 174.
  • Lee S.H., Singh A.P., Chung G.C., 2004. Rapid accumulation of hydrogen peroxide in cucumber roots due to exposure to low temperature appears to mediate decreases in water transport. J. Exp. Bot. 55, 403, 1733–1741.
  • Liao Fang Lei, Jiang Wu, Zheng Yue Ping, Xu Hang Lin, Li Li Qing, Lu Hong Fei, 2011. Influences of temperatur regime on germination of seed of wild soybean (Glycine soja). Agric. Sci. Technol. 12, 4, 480–483.
  • Lu Cun Fu, Pen Gui Ying, Lu Gf, Pen Gy, 1994. Effects of light on photosynthesis of alfalfa under cold stress. Grass. China 5, 15–18.
  • Maguire J.D., 1962. Speed of germination-aid in selection and evolution for seedling emergence and vigor. Crop Sci. 2, 176–177.
  • McKersie B.D., Lesham Y.Y., 1994. Stress and stress coping in cultivated plants. Dordrecht, Boston, London, Kluwer Academic Publishers, 79–103.
  • Posmyk M.M., Corbineau F., Vinel D., Bailly C., Come D., 2001. Osmoconditioning reduces physiological and biochemical damage induced by chilling in soybean seeds. Physiol. Plant. 111(4), 473–482.
  • Posmyk M.M., Bailly C., SzafraĔska K., Janas K.M., Corbineau F., 2005. Anioxidant enzymes and isoflavonoids in chilled soybean (Glycine max (L.) Merr) seedlings. J. Plant Physiol. 162, 403–412.
  • Posmyk M.M., Janas K.M., 2007. Effects of seed hydropriming in presence of exogenous proline on chilling injury limitation in Vinga radiate L. seedlings. Acta Physiol. Plant. 29, 509–517.
  • Prasad T.K., Anderson M.D., Martin B.A., Stewart C.R., 1994. Evidence for chilling – induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell. 6, (1), 65–74.
  • Purcell L.C., Ashley D.A., Boema H.R., 1987. Effects of chilling on photosynthetic capacity and leaf carbohydrate and nitrogen status of soybean. Crop Sci. 27, 90–95.
  • Starck Z., Niemyska B., Bogdan J., Akour Tawalbeh R.N., 2000. Response of tomato plant to chilling stress in associated with nutrient or phosphorus starvation. Plant Soil 226, 99–106.
  • Szalai G., Janda T., Paldi E., Szigeti Z., 1996. Role of light in the development of post-chilling symptoms in maize. J. Plant Physiol. 148, 378–383.
  • Tyagi S.K., Tripathi R.P., 1983. Effect of temperature on soybean germination. Plant Soil 74, 273–280.
  • Wang Z., Reddy Y.R., Quebedeaux B., 1997. Growth and photosynthetic responses of soybean to short- term cold temperature. Environ. Exp. Bot. 37, 13–24.
  • Wolfe D.W., 1991. Low temperature effects on early vegetative growth, leaf gas exchange and water potential of chilling-sensitive and chilling-tolerant crop species. Ann. Bot. 67, 205–212.
  • Yadegari L.Z., Heidari R., Carapetian J., 2007. The influence of cold acclimation on proline, malondialdehyde (MDA), total protein and pigments contents in soybean (Glycine max) seedlings. J. Biol. Sci. 7(8), 1436–1441.
  • Zhang Jing Xian, Cui Si Ping, Li Jun Ming, Wei Jian Kun, Kirkham M.B., 1995. Protoplasmic factors, antioxidant responses and chilling resistance in maize. Plant Physiol. Biochem. 33, 5, 567–575.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-00e41a61-15bd-4934-b36f-b7ab65c1e032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.