Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 66 | 2 |

Tytuł artykułu

Intracellular siderophore detection in an Egyptian, cobalt-treated Fusarium solani isolate using SEM-EDX with reference to its tolerance


Warianty tytułu

Języki publikacji



An Egyptian, plant pathogenic Fusarium solani isolate was grown on cobalt concentrations of 0, 50, 200, 500, 800, and 1000 ppm. The isolate survived concentrations up to 800 ppm, however failed to grow at 1000 ppm. Morphology and elemental analysis of the isolate under the investigated Co concentrations were studied using Scanning electron microscopy (SEM) and energy dispersive X-ray microanalysis (EDX). The isolate reserved its morphology up to a concentration of 200 ppm. Morphological distortions were dramatic at 500 and 800 ppm. EDX detected Co uptake through the hyphae, microconidia, macroconidia, and chlamydospores. Iron, calcium, and potassium were also detected. EDX results showed a linear relationship between Co% and Fe% up to a concentration of 500 ppm reflecting the possible ability of the isolate to synthesize intracellular siderophores storing iron and their release from the vacuoles. The participation of such siderophoresin conferring tolerance against cobalt is discussed. At 800 ppm, the % of Fe was greatly reduced with an accompanying increase inmorphological distortions and absence of microconidia. Increasing the implicated cobalt concentrations resulted in increasing the percentages of the chelated cobalt reflecting the possible implication of the cell wall as well as extracellular siderophores in the uptake of cobalt. The current results recommend the absence of cobalt in any control regime taken to combat the investigated F. solani isolate and highlights the accomplishment of biochemical, ultrastructural, and molecular studies on such isolate to approve the production of siderophores and the role of cell wall in cobalt uptake.

Słowa kluczowe








Opis fizyczny



  • Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Riyadh, KSA
  • Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt


  • Abdul-Tawab K.I. and Z.T. Maqsood. 2007. Critical behavior of Iron (III) with a typical catecholate siderophore. Sci. Iran 14: 106–111.
  • Akthar N.M.D., K.S. Sastry and P.M. Mohan. 1996. Mechanism of metal ion biosorption by fungal biomass. Biometals 9: 21–28.
  • Al-Yemeni M.N. and A.R. Hashem. 2006. Heavy Metals and Microbial Analysis of Soil Samples Collected from Aramco Gulf Operation Company (AGOC), Al-Khafji, Saudi Arabia. S. J. Biologic. Sci. 13: 129–133.
  • Anahida S., S. Yaghmaei and Z. Ghobadinejad. 2011. Heavy metal tolerance of fungi. Scientia Iranica C 18: 502–508.
  • Andreini C., I. Bertini, G. Cavallaro, G.L. Holliday and J.M. Thornton. 2008. Metal ions in biological catalysis: from enzyme databases to general principles. J. Biol. Inorg. Chem. 13: 1205–1218.
  • Bellion M., M. Courbot, C. Jacob, D. Blaudez and M. Chalot. 2006. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi, FEMS Microbiol. Lett. 254: 173–181.
  • Bogale M., E.T. Steenkamp, M.J. Wingfield and B.D. Wingfield. 2009. Diverse Fusarium solani isolates colonize agricultural environments in Ethiopia. Eur. J. Plant Pathol. 124: 369–378.
  • Braud A., V. Geoffroy, F. Hoegy, G.L.A. Mislin and I.J. Schalk. 2010. The siderophores pyoverdine and pyochelin are involved in Pseudomonas aeruginosa resistence against metals: Another biological function of these two siderophores. Environ. Microbiol. Rep. 2: 419–425.
  • Bunn H.F., J. Gu, L.E. Huang, J.W. Park and H. Zhu. 1998. Erythropoietin: a model system for studying oxygen dependent gene regulation. J. Exp. Biol. 201: 1197–1201.
  • de Locht M., J.R. Boelaert and Y.J. Schneider. 1994. Iron uptake from ferrioxamine and from ferrirhizoferrin by germinating spores of Rhizopus microsporus. Biochem. Pharmacol. 47: 1843–1850.
  • Dordas C. 2008. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron. Sustain. Dev. 28: 33–46.
  • Eisendle M., H. Oberegger, I. Zadra and H. Haas. 2003. The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding l-ornithine N 5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Mol. Microbiol. 49: 359–375
  • Eisendle M., M. Schrettl, C. Kragl, D. Muller, P. Illmer and H. Haas. 2006. The intracellular siderophore ferricrocin is involved in iron storage, oxidative-stress resistance, germination, and sexual development in Aspergillus nidulans. Eukaryotic Cell 5: 1596–1603.
  • Expert D., T. Franza and A. Dellagi. 2012. Iron in plant-pathogen interactions, pp. 7–39. In: Expert D. and M.R. O’Brian (eds). Molecular Aspects of Iron Metabolism in Pathogenic and Symbiotic Plant- Microbe Associations. Springer Press, New York.
  • Farrag R.M., M.M. Mohamadein and A.A. Mekawy. 2008. Scanning Electron microscopy and energy-dispersive X-Ray microanalysis of Penicillium brevicompactum treated with cobalt. Pol. J. Microbiol 57: 321–326.
  • Farrag R.M. 2009. Ultrastructure, glutathione and low molecular weight proteins of Penicillium brevicompactum in response to cobalt. Pol. J. Microbiol. 58: 327–338.
  • Goldberg M.A., S.P. Dunning and H.F. Bunn. 1988. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242: 1412–1415
  • Haas H., I. Zadra, G. Stoffler and K. Angermayr. 1999. The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J. Biol. Chem. 274: 4613–4619.
  • Haas H. 2012. Iron – a key nexus in the virulence of Aspergillus fumigatus. Front. Microbiol. 3: 28.
  • Hashem A.R. and A.H. Bahkali. 1994. Toxicity of cobalt and nickel to Fusarium solani isolated from Saudi Arabian soil. Qatar Univ. Sci. J. 14: 63–65.
  • Heldal M., S. Norland and O. Tumyr. 1985. X-ray microanalytic method for measurement of dry matter and elemental content of individual bacteria. Appl. Environ. Microbiol. 50: 1251–1257.
  • Hong J.W., J.Y. Park and G.M. Gadd. 2009. Pyrene degradation and copper and zinc uptake by Fusarium solani and Hypocrea lixii isolated from petrol station soil. J. Appl. Microbiol. 108: 2030–2040.
  • Kapoor A. and T. Viraraghavan. 1997. Heavy metal biosorption sites in Aspergillus niger. Bioresour. Technol. 61: 221–227.
  • Lesuisse E. and P. Labbe. 1994. Reductive iron assimilation in Saccharomyces cerevisiae, pp. 149–178. In: Winkelmann G. and D.R. Winge (eds). Metal Ions in Fungi. Marcel Dekker, New York.
  • Lopez-Berges M.S., J. Capilla, D. Turra, L. Schafferer, S. Matthijs, C. Jochl, P. Cornelis, J. Guarro, H. Haas and A. Di Pietro. 2012. HapX-mediated iron homeostasis is essential for rhizosphere competence and virulence of the soil borne pathogen Fusarium oxysporum. Plant Cell 24: 3805–3822.
  • Maghsoodi V., J. Razavi and S. Yaghmaei. 2007. Production of Chitosan by submerged fermentation from Aspergillus niger. Sci. Iran. Trans. C 16: 180–184.
  • Miethke M. and M.A. Marahiel 2007. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71: 413–451.
  • Muraleedharan T.R., L. Lyengar and C. Venkobachar. 1994. Further insight into the mechanism of biosorption of heavy metals by Ganoderma lucidurn. Emviron. Technol. 15: 1015–1027.
  • Neubauer U., B. Nowak, G. Furrer and R. Schulin. 2000. Heavy metal sorption on clay minerals affected by the siderophore desferrioxamine B. Environ. Sci. Technol. 34: 2749–2755.
  • Nyilasi I., T. Papp, M. Tako’, E. Nagy and C. Vagvolgyi. 2005. Iron gathering of opportunistic pathogenic fungi. A mini review. Acta Microbiol. Immunol. Hung. 52: 185–197.
  • Oide S., W. Moeder, S. Krasnoff, D. Gibson, H. Haas, K. Yoshioka and B.G. Turgeon. 2006. NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18: 2836–2853.
  • Oide S., S.B. Krasnoff, D.M. Gibson and B.G. Turgeon. 2007. Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberellazeae. Eukaryot Cell 6: 1337–1353.
  • Oide S., F. Berthiller, G. Wiesenberger, G. Adam and B.G. Turgeon. 2015. Individual and combined roles of malonichrome, ferricrocin, and TAFC siderophores in Fusarium graminearum pathogenic and sexual development. Front. Microbiol. 5: 759.
  • Oliviera A. and M.E. Pampulha. 2006. Effects of long-term heavy metal contamination on soil microbial characteristics. J. Biosci Bioeng. 102: 157–161.
  • Olivieri F., M.E. Zanetti, C.R. Oliva, A.A. Covarrubias and C.A. Casalongue. 2002. Characterization of an extracellular serine protease of Fusarium eumartii and its action on pathogenesis related proteins. Eur. J. Plant Pathol. 108: 63–72.
  • Philpott C.C. 2006. Iron uptake in fungi: A system for every source. Biochimica et Biophysica Acta 1763: 636–645.
  • Poltronieri L.S., D.R. Trinidad, F.C. Albuquerque, M.L.R. Duarte and S.S. Cardoso. 2002. Incidence of Fusarium solani in annulled in the state of Para. Brazil. Fitopatol. Bras. 27: 544.
  • Saad A.M. 2014. Biosorption of soluble and insoluble inorganic compounds by non-trained and cobalt-trained Mucor rouxii NRRL 1894 and Rhizopus sp. biomass. Eur. J. Biotechnol. Biosci. 2: 21–26.
  • Schalk I.J., M. Hannauer and A. Braud. 2011. New roles for bacterial siderophores in metal transport and tolerance. Environ. Microbiol. 13: 2844–2854.
  • Schrettl M., E. Bignell, C. Kragl, Y. Sabiha, O. Loss, M. Eisendle, A. Wallner, H.N. Arst, K. Haynes and H. Haas. 2007. Distinct roles for intra and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog. 3: e128.
  • Seneviratne M. and M. Vithanage. 2015. The role of siderophores on plants under heavy meal stress: a view from the rhizosphere. J. Botanic. Sci. 4: 23–29.
  • Sow F.B., G.R. Alvarez, R.P. Gross, A.R. Satoskar, L.S. Schlesinger, B.S. Zwilling and W.P. Lafuse. 2009. Role of STAT1, NF-kappaB and C/EBP beta in the macrophage transcriptional regulation of hepsidin by mycobacterial infection and IFN-gamma. J. Leukoc. Biol. 86: 1247–1258.
  • Stadler J.A. and R. Schweyen. 2002. The yeast iron regulon is induced upon cobalt stress and crucial for cobalt tolerance. J. Biol. Chem. 277: 39649–39654.
  • Symeonidis A. and M. Marangos. 2012. Iron and microbial growth, pp. 289–330. In: Priti R. (eds.) Insight and Control of Infectious Disease in Global Scenario. Intech Press.
  • Thelander L., A. Graslund and M. Thelander. 1983. Continual presence of oxygen and iron required for mammalian ribonucleotide reduction: Possible regulation mechanism. Biochem. Biophys. Res. Commun. 110: 859–865.
  • Tsekova K., D. Christova and M. Ianis. 2006. Heavy Metal Biosorption sites in Penicillium cyclopium. J. Appl. Sci. Environ. 10: 117–121.
  • van der Helm D. and G. Winkelmann. 1994. Hydroxamates and polycarboxylates as iron transport agents (siderophores) in fungi, pp. 39–98. In: Winkelmann G. and D. Winge (eds.) Metal Ions in Fungi. Marcel Dekker, New York.
  • Wallner A., M. Blatzer, M. Schrettl, B. Sarg, H. Lindner and H. Haas. 2009. Ferricrocin, a siderophore involved in intra and transcellular iron distribution in Aspergillus fumigatus. Appl. Environ. Microbiol. 75: 4194–4196.
  • Wang Y, Q. Li, J. Shi, Q. Lin, X. Chen, W. Wu and Y. Chen. 2008. Assessment of microbial activity and bacterial community composition in the rhizosphere of a copper accumulator and a nonaccumulator. Soil Biol. Biochem. 40: 1167–1177.
  • Winkelmann G. 1991. Importance of siderophores in fungal growth, sporulation and spore germination, pp. 49–65. In: Hawksworth D.L. (ed.) Frontiers in Mycology. CAB International Press, Wallingford.
  • Winkelmann G. 1992. Structures and functions of fungal siderophores containing hydroxamate and complexone type iron binding ligands. Mycol. Res. 96: 529–534.
  • Yeterian E., L.W. Martin, I.L. Lamont and I.J. Schalk. 2010. An efflux pump is required for siderophore recycling by Pseudomonas aeruginosa. Environ. Microbial. Rep. 2: 412–418.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.