PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 25 | 4 |

Tytuł artykułu

Influence of increase of sensomotor task difficulty on neural system arousal and motoric performance

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Introduction. Requirements of current everyday life underline the importance of accurate and rapid response to the created situation. In addition to our ability to physically handle movement responses, it is very important to decide, which type of movement response is selected, and how a particular movement is programmed so that the movement response to the created situation could be adequate. If the difficulty of a sensomotor task is higher, the time needed to achieve the goal is extended – this fact was explored by Fitts already in 1954. Aim of Study. The objective of this study was to find out whether an increase in the difficulty of a performed movement task with certain demands on perception, thinking, attention, and memory can influence activation of the nervous system, and vice versa. Material and Methods. The test sample consisted of 84 persons (n = 84). The activation level of the nervous system was objectified by the measurement of skin conductivity with the device PowerLab, ML 116 GSR Amp from ADInstrument. The level of sensomotor performance was verified by the support drawing test. Results. The Friedman test result shows that there a significant difference exists in performance results in at least one measurement of the support drawing test. It is obvious from the table that the average values of time in all three measurements of the support drawing test are increasing. The effect size value of η² = 1.16 shows that, almost with a good degree of certainty, the result is not influenced by statistics tools. Conclusions. This research confirmed our expectations that the increased difficulty level of a sensomotor test of bimanual co-ordination has a significant impact on sensomotor performance, as well as on changes in activity of the autonomic nervous system. This study has a limited validity for the college student population at the age of 20-25 years.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

4

Opis fizyczny

p.217-223,ref.

Twórcy

autor
  • Department of Physical Education and Sport, University of West Bohemia, Pilsen, Czech Republic
autor
  • Department of Physical Education and Sport, University of West Bohemia, Pilsen, Czech Republic

Bibliografia

  • 1. Aznar S, Naylor PJ, Silva P, Pérez M, Angulo T, Laguna M, López-Chicharro J. Patterns of physical activity in Spanish children: a descriptive pilot study. Child Care Health Dev. 2011; 37(3): 322-328.
  • 2. Bangert AS, Reuter-Lorenz PA, Walsh CM, Schachter AB, Seidler RD. Bimanual coordination and aging: neurobehavioral implications. Neuropsychologia. 2010; 48(4): 1165-1170.
  • 3. Bellis TJ, Wilber LA. Effects of aging and gender on interhemispheric function. J Speech Lang Hear Res. 2001; 44: 246.
  • 4. Bernstein B. The structuring of pedagogic discourse: class, codes & control. Volume IV. London: Routledge; 1990.
  • 5. Blinch J, Franks IM, Carpenter MG, Chua R (2017). Response selection contributes to the preparation cost for bimanual asymmetric movements. J Mot Behav. 2018; 50(4): 392-397.
  • 6. Boucsein W. Electrodermal activity. New York: Springer Science & Business Media; 2012.
  • 7. Chen SE. Quicktime VR: An image-based approach to virtual environment navigation. In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. Apple Computer; 1995. p. 29-38.
  • 8. Chiou SC, Chang EC. Bimanual coordination learning with different augmented feedback modalities and information types. PLoS ONE. 2016; 11(2): e0149221. doi: 10.1371/journal.pone.0149221
  • 9. Critchley HD. Interaction between cognition, emotion, and the autonomic nervous system. Handb Clin Neurol. 2013; 117: 59-77. doi: 10.1016/B978-0-444-53491-0.00006-7
  • 10. Donchin O, Gribova A, Steinberg O, Bergman H, de Oliveira CS, Vaadia E. Local field potentials related to bimanual movements in the primary and supplementary motor cortices. Exp Brain Res. 2001; 140(1): 46-55.
  • 11. Fu M, Yu X, Lu J, Zuo Y. Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature. 2012; 483(7387): 92-95. doi: 10.1038/nature10844
  • 12. Georgopoulos AP. (1995). Current issues in directional motor control. Trends Neurosci. 1995; 18(11): 506-510.
  • 13. Halsband U, Ito N, Tanji J, Freund HJ. The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain. 1993; 116(1): 243-266.
  • 14. Hampson E. Variations in sex-related cognitive abilities across the menstrual cycle. Brain Cogn. 1990; 14(1): 26-43.
  • 15. Hendl J. Přehled statistických metod: analýza a metaanalýza dat (Overview of statistical methods: data analysis and meta-analysis). 5th ed. Praha: Portál; 2015.
  • 16. Irmiš F. Temperament a autonomní nervový systém. Diagnostika, psychodiagnostika, konstituce, psychofyziologie (Temperament and autonomic nervous system. Diagnosis, psychodiagnostics, constitution, psychophysiology). Praha: Galen; 2007.
  • 17. Králíček P. Úvod do speciální neurofyziologie (Introduction to special neurophysiology). Praha: Karolinum; 2002.
  • 18. Kulišťák P. Neuropsychologie (Neuropsychology). Praha: Portál; 2003.
  • 19. Luppino G, Matelli M, Camarda RM, Gallese V, Rizzolatti G. Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: an intracortical microstimulation study in the macaque monkey. J Comp Neurol. 1991; 311(4): 463-482.
  • 20. Mechling H, Effenberg AO. Motorische Entwicklung (Motorical development). In: Tietjens M, Strauß B, editors. Handbuch Sportpsychologie (Handbook Sports Psychology). Schorndorf: Hofmann; 2006.
  • 21. Oakes M, Brown M, Warren S, et al. Bimanual motor coordination in agenesis of the corpus callosum. Behav Neurosci. 2009; 123(5): 1000-1011.
  • 22. Obhi SS. Bimanual Coordination: An Unbalanced Field of Research. Motor Control. 2004; 8(2): 111-120.
  • 23. Öhman A, Hamm A, Hugdahl K. Cognition and the autonomic nervous system: Orienting, anticipation, and conditioning. In: Cacioppo JT, Tassinary LG, Berntson GG, editors. Handbook of psychophysiology. New York, NY: Cambridge University Press; 2000. p. 533-575.
  • 24. Salcman V. Erforschung von Synergien der Sehfunktionen und der menschlichen äusseren Bewegungsaudrücke (Researching synergies of visual functions and human external movement audiences). Chemnitz: GUC – Verlag der Gesellschaft für Unternehmensrechnung und Controlling; 2015.
  • 25. Scott SH, Sergio LE, Kalaska JF. Reaching movements with similar hand paths but different arm orientations. II. Activity of individual cells in dorsal premotor cortex and parietal area 5. J Neurophysiol. 1997; 78: 2413-2426.
  • 26. Shetty AK, Shankar MS, Annamalai N. Bimanual Coordination: Influence of Age and Gender. J Clin Diagn Res. 2014; 8(2): 15-16.
  • 27. Thomas RT, Nelson KN, Silverman SJ. Research methods in physical activity. Champaign: Human Kinetic; 2003.
  • 28. Valach P, Vašíčková J, Votík J, Lukavská M, Klobouk T, Dygrýn J. Charakteristika pohybové aktivity obyvatel Plzeňského regionu zjišťovaná v letech 2005-2009 (Characteristic of the movement activity of the inhabitants of the Pilsen region surveyed in 2005-2009). Tělesná kultura. 2011; 34(1): 76-93.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-009ae839-e054-482b-9a46-fa68c2b62f91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.