PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 5 |
Tytuł artykułu

Expression pattern of the psbO gene and its involvement in acclimation of the photosynthetic apparatus during abiotic stresses in Festuca arundinacea and F. pratensis

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
PsbO, the manganese-stabilizing protein, plays a crucial role in oxygen-evolving complex functioning and stabilization, by maintaining optimal manganese, calcium and chloride concentrations at the active state of PSII. In this paper we present a study focused on recognizing the relationship between psbO gene activity and acclimation of the photosynthetic apparatus under abiotic stresses in the grasses Festuca arundinacea and F. pratensis. PsbO expression was compared between two distinct genotypes within each species which differed in their levels of stress tolerance (drought and frost, respectively) during drought treatment (F. arundinacea) and cold acclimation (F. pratensis). The research involved: (1) the analyses of psbO gene expression profiles using real-time PCR, and (2) the analyses of PsbO protein accumulation profiles using protein gel blot hybridization. The results indicate that PsbO plays a protective function with respect to the photosynthetic apparatus during abiotic stresses. In cold-treated F. pratensis plants the accumulation of PsbO seems to be responsible for differences in the PSII photochemical efficiency. Higher stability of PSII during drought, observed in the high-drought tolerant F. arundinacea genotype, is not associated with PsbO accumulation, although the degradation of this protein affects destabilization of the oxygen-evolving complex in drought.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
34
Numer
5
Opis fizyczny
p.1915-1924,fig.,ref.
Twórcy
autor
  • Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland
autor
  • Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland
autor
  • Department of Plant Physiology, University of Agriculture in Krakow, Podluzna 3, 30-239 Krakow, Poland
Bibliografia
  • Appenroth KJ, Stockel J, Srivastava A, Strasser RJ (2001) Multiple effects of chromate on the photosynthetic apparatus Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ Pollut 115:49–64
  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Env Exp Bot 59:206–216. doi:10.1016/j.envexbot.2005.12.006
  • Bricker TM, Burnap RL (2005) The extrinsic proteins of photosystem II. In: Wydrzynski T, Satoh K (eds) Photosystem II: the water/plastoquinone oxido-reductase of photosynthesis. Springer, Dordrecht, pp 95–120
  • Bricker TM, Frankel LK (2011) Auxiliary functions of the PsbO, PsbP and PsbQ proteins of higher plant Photosystem II: a critical analysis. J Photochem Photobiol B 104:165–178. doi:10.1016/j. jphotobiol.2011.01.025
  • Canovas FM, Dumas-Gaudot E, Recorbet G, Jorrin J, Mock HP, Rossignol M (2004) Plant proteome analysis. Proteomics 4:285–298. doi:10.1002/pmic.200300602
  • Cao YJ, Wei Q, Liao Y, Song HL, Li X, Xiang CB, Kuai BK (2009) Ectopic overexpression of AtHDG11 in tall fescue resulted in enhanced tolerance to drought and salt stress. Plant Cell Rep 28:579–588. doi:10.1007/s00299-008-0659-x
  • De Ronde JA, Cress WA, Krüger GHJ, Strasser RJ, Van Staden J (2004) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161:1211–1224. doi:10.1016/j.jplph. 2004.01.014
  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279. doi:10.1055/s-2004-820867
  • Hashimoto A, Yamamoto Y, Theg SM (1996) Unassembled subunits of the photosynthetic oxygen-evolving complex present in the thylakoid lumen are long-lived and assembly-competent. FEBS Lett 391:29–34. doi:10.1016/0014-5793(96)00686-2
  • Hashimoto A, Ettinger WF, Yamamoto Y, Theg SM (1997) Assembly of newly imported oxygen-evolving complex subunits in isolated chloroplasts: site of assembly and mechanism of binding. Plant Cell 9:441–452
  • Heredia P, De Las Rivas J (2003) Fluorescence induction of Photosystem II membranes shows the step till reduction and protonation of the quinine pool. J Plant Physiol 160:1499–1506. doi:10.1078/0176-1617-01011
  • Humphreys J, Harper JA, Armstead IP, Humphreys MW (2005) Introgression-mapping of genes for drought resistance transferred from Festuca arundinacea var. glaucescens into Lolium multiflorum. Theor Appl Genet 110:579–587. doi:10.1007/s00122-004-1879-2
  • Humphreys MW, Gąsior D, Leśniewska-Bocianowska A, Zwierzykowski Z, Rapacz M (2007) Androgenesis as a means of dissecting complex genetic and physiological controls: selecting useful gene combinations for breeding freezing tolerant grasses. Euphytica 158:337–345. doi:10.1007/s10681-006-9240-2
  • Kosmala A, Zwierzykowski Z, Gasior D, Rapacz M, Zwierzykowska E, Humphreys MW (2006) GISH/FISH mapping of genes for freezing tolerance transferred from Festuca pratensis to Lolium multiflorum. Heredity 96:243–251. doi:10.1038/sj.hdy.6800787
  • Kosmala A, Zwierzykowski Z, Zwierzykowska E, Luczak M, Rapacz M, Gasior D, Humphreys MW (2007) Introgression mapping of genes for winter hardiness and frost tolerance transferred from Festuca arundinacea into Lolium multiflorum. J Hered 98:311–316. doi:10.1093/jhered/esm047
  • Kosmala A, Bocian A, Rapacz M, Jurczyk B, Zwierzykowski Z (2009) Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance. J Exp Bot 60:3595–3609. doi: 10.1093/jxb/erp205
  • Kuwabara T, Murata N (1979) Purification and characterization of 33 kilodalton protein of spinach chloroplasts. Biochim Biophys Acta 581:228–236
  • Lundin B, Thuswaldner S, Shutova T, Eshaghi S, Samuelsson G, Barber J, Andersson B, Spetea C (2007) Subsequent events to GTP binding by the plant PsbO protein: structural changes, GTP hydrolysis and dissociation from the photosystem II complex. Biochim Biophys Acta 1767:500–508. doi:10.1016/j.bbabio. 2006.10.009
  • Lydakis-Simantiris N, Hutchison RS, Betts SD, Barry BA, Yocum CF (1999) Manganese stabilizing protein of photosystem II is a thermostable, natively unfolded polypeptide. Biochemistry 38:404–414. doi:10.1021/bi981847z
  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421. doi:10.1016/j.bbabio. 2006.11.019
  • Murray JW, Barber J (2006) Identification of a calcium-binding site in the PsbO protein of photosystem II. Biochemistry 4:4128–4130. doi:10.1021/bi052503t
  • Oukarroum A, EL Madidi S, Schansker G, Strasser RJ (2007) Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and rewatering. Environ Exp Bot 60:438–446. doi:10.1016/j. envexpbot.2007.01.002
  • Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycinebetaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth Res 44:243–252
  • Pawłowicz I, Rapacz M (2010) Genotype differences in drought tolerance of photosynthetic apparatus in F. arundinacea Schreb. are connected with the Cu-Zn SOD protein accumulation. Zeszyty Problemowe PNR 545:191–197
  • Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882. doi:10.1093/jxb/erq340
  • Powles S (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15–44
  • Rapacz M (1998) Physiological effects of winter rape (Brassica napus var. oleifera) prehardening to frost, II. Growth, energy partitioning and water status during cold acclimation. J Agron Crop Sci 181:81–87. doi:10.1111/j.1439-037X.1998.tb00402.x
  • Rapacz M (2007) Chlorophyll a fluorescence transient during freezing and recovery in winter wheat. Photosynthetica 45:409–418. doi: 10.1007/s11099-007-0069-2
  • Rapacz M, Gąsior D, Kościelniak J, Kosmala A, Zwierzykowski Z, Humphreys MW (2004) The role of the photosynthetic apparatus in cold acclimation of Lolium multiflorum. Characteristics of novel genotypes low-sensitive to PSII over-reduction. APP 29:309–316. doi:10.1007/s11738-007-0040-7
  • Rapacz M, Kościelniak J, Jurczyk B, Adamska A, Wójcik M (2010) Different patterns of physiological and molecular response to drought in seedlings of malt- and feed-type barleys (Hordeum vulgare). J Agron Crop Sci 196:9–19. doi:10.1111/j.1439-037X.2009.00389.x
  • Roose JL, Yocum CF, Popelkova H (2011) Binding stoichiometry and affinity of the manganese-stabilizing protein affects redox reactions on the oxidizing side of photosystem II. Biochemistry 12(50(27)):5988–5998. doi:10.1021/bi2008068
  • Rudi H, Sandve SR, Opseth LM, Larsen A, Rognli OA (2011) Identification of candidate genes important for frost tolerance in Festuca pratensis Huds. by transcriptional profiling. Plant Sci 180:78–85. doi:10.1016/j.plantsci.2010.07.014
  • Sandve SR, Kosmala A, Rudi H, Fjellheim S, Rapacz M, Yamada T, Rognli OA (2011) Molecular mechanisms underlying frost tolerance in perennial grasses adapted to cold climates. Plant Sci 180:69–77. doi:10.1016/j.plantsci.2010.07.011
  • Sarvikas P, Hakala M, Pätsikkä E, Tyystjärvi T, Tyystjärvi E (2006) Action spectrum of photoinhibition in leaves of wild type and npq1-2 and npq4-1 mutants of Arabidopsis thaliana. Plant Cell Physiol 47:391–400. doi:10.1093/pcp/pcj006
  • Spetea C, Hundal T, Lundin B, Heddad M, Adamska I, Andersson B (2004) Multiple evidence for nucleotide metabolism in the chloroplast thylakoid lumen. Proc Natl Acad Sci USA 101:1409–1414. doi:10.1073/pnas.0308164100
  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32–42. doi:10.1111/j.1751-1097.1995.tb09240.x
  • Strasser RJ, Srivatava A, Tsimilli–Michael M (2000) The fluorescence transient as tool to characterize and screen photosynthetics samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism regulation and adaptation. Taylor and Francis, Bristol, pp 445–483
  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182. doi: 10.1016/j.tplants.2008.01.005
  • Thomas H, Humphreys MO (1991) Progress and potential of interspecific hybrids of Lolium and Festuca. J Agric Sci 117:1–8. doi: 10.1017/S0021859600078916
  • Yamamoto Y (2001) Quality control of photosystem II. Plant Cell Physiol 42:121–128. doi:10.1093/pcp/pce022
  • Yamamoto Y, Ishikawa Y, Nakatani E, Yamada M, Hang H, Wydrzynski T (1998) Role of an extrinsic 33 kilodalton protein of photosystem II in the turnover of the reaction center-binding protein D1 during photoinhibition. Biochemistry 37:1565–1574. doi:10.1021/bi9707640
  • Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D, Yamashita A, Nijo N, Inagawa K, Morita N, Sasaki T, Yamamoto Y (2008) Quality control of photosystem II: impact of light and heat stresses. Photosynth Res 98:589–608. doi:10.1007/s11120-008-9372-4
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-00946d7d-d096-4eac-88a6-e24b814a51aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.