Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników


2010 | 64 |

Tytuł artykułu

Polymorphism in Syringa rDNA regions assessed by PCR technique

Treść / Zawartość

Warianty tytułu

Języki publikacji



The Syringa genus is characterizedby a multiplicity of forms. Its chief asset is the ornamental value of thousands of accessions, species or hybrids. From a phylogenetic point of view the genus is difficult in an explicit classification due to its frequently complex genome. The aim of this study was to determine the possibility for the identification of genotypic diversity and genetic relationships in the nrDNA sequence of some selected Syringa accessions – part of a collection of the Dendrological Garden in Przelewice (Poland). For this purpose, the PCR technique together with a combination of various ‘universal’ primers designed for the nrDNA sequence analysis were employed. Fourteen Syringa accessions: Syringa × chinensis Willd., S. × prestoniae Mc Kelv., S. × prestoniae ‘Telimena’, S. × prestoniae ‘Jaga’, S. × prestoniae ‘Basia’, S. meyeri ‘Palibin’, S. vulgaris ‘Miss Ellen Willmott’, S. vulgaris, S. vulgaris ‘Jules Simon’, S. vulgaris ‘Katherine Havemeyer’, S. vulgaris ‘Krasawica Moskvy’, S. vulgaris ‘Mirabeau’, S. vulgaris ‘Madame Lemoine’ and S. vulgaris ‘Niebo Moskvy’ made up the research material. In the conducted amplifications, genetic profiles were obtained for 14 combinations among the 25 combinations of different pairs of primers used. The nrDNA templates coding the small subunit (SSU), 5.8S subunit andITS1, ITS2 andIGS sequences were amplified. In PCR reactions a total of 33 PCR products were generated, of which 21 (64%) products were polymorphic, 6 (18%) monomorphic and6 (18%) were genotype-specific. For the lilac accessions examined246 amplicons were generated from ~230 to ~1100 bp in length. The analysis of both the dendrogram and the genetic similarity matrix revealedlow diversity between the examinedaccessions. For most they rangedfrom 70 to 80%, andthe greatest diversity (87%) was foundbetween the S. × prestoniae: ‘Basia’ and‘Telimena’ accessions, while the lowest (57%) was observed between S. vulgaris ‘Katherine Havermeyer’ and S. × chinensis.

Słowa kluczowe







Opis fizyczny



  • Department of Plant Genetics, Breeding and Biotechnology, Poland


  • Álvarez I., Wendel J.F. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Department. Molecular Phylogenetics and Evolution 29: 417–434.
  • Anderson E., Rehder A. 1935. New hybrids from the ArnoldArboretum. Journal of the Arnold Arboretum 16: 358–363.
  • Appels R., Dvorak J. 1982. The wheat ribosomal DNA spacer region: Its structure andvariation in populations and among species. Theoretical and Applied Genetics 63: 337–348.
  • Archak S., GaikwadA.B., Gautam D., Rao E.V.V.B., Swamy K.R.M., Karihaloo J.L. 2003. DNA fingerprinting of Indian cashew (Anacardium occidentalle) varieties using RAPD and ISSR techniques. Euphytica 130: 397–404.
  • Baldwin B.G., Sanderson M.J., Porter J.M., Wojciechowski M.F., Campbell C.S., Donoghue M.J. 1995. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden 82: 247–277.
  • Baldwin B.G. 1992. Phylogenetic utility of the internal transcribedspacers of nuclear ribosomal DNA in plants: an example from the Compositae. Molecular Phylogenetics and Evolution 1: 3–16.
  • Baldwin B.G., Markos S. 1998. Phylogenetic utility of the external transcribedspacers (ETS) of 18S–26S rDNA: congruence of ETS andITS trees of Calycadenia (Compositae). Molecular Phylogenetics and Evolution 10: 449–463.
  • Bayly M.J., Ladiges P.Y. 2007. Divergent paralogues of ribosomal DNA in eucalypts (Myrtaceae). Molecular Phylogenetics andEvolution 44: 346–356.
  • Bernardi R., Manzo M., Durante M., Petrucceli R., Bartolini G. 2002. Molecular markers for cultivar characterization in Olea europea. Acta Horticulturae (ISHS) 586: 97–100.
  • Cabrita L.F., Aksoy U., Hepaksoy S., Leitao J.M. 2001. Suitability of isozyme RAPD andAFLP markers to asses genetic differences and relatedness among fig (Ficus carica L.) clones. Scientia Horticulturae 87: 261–273.
  • Chen J.Y., Zhang Z.S., Hong D.Y. 2008. Taxonomic revision of Syringa pinetorum complex (Oleaceae). Journal of Systematics and Evolution 46: 93–95.
  • Chylarecki H., Syczewska M., Misiak K. 2008. Drzewa i krzewy ozdobne ogrodu egzotów w Przelewicach na Ziemi Pyrzyckiej. Przelewice: Ogród Dendrologiczny.
  • Cronn R.C., Small R.L., Haselkorn T., Wendel J.F. 2002. RapidDiversification of the Cotton Genus (Gossypium: Malvaceae) Revealedby Analysis of Sixteen Nuclear and Chloroplast Genes. American Journal of Botany 89: 707–725.
  • CrowfordD., Tago-Nakazawa M., Stuessy T.F., Anderson G.J., Bernardello G., Ruiz E., Jensen R.J., Baeza C.M., Wolfe A.D., Silva O.M. 2001. Inter-simple sequence repeat (ISSR) variation in Lactoris fernandeziana (Lactoridaceae), a rare endemic of the Juan Fernandez Archipelago, Chile. Plant Species Biology 16: 185–192.
  • Damtoft S., Franzyk H., Jensen S. R. 1995. Biosynthesis of iridoids in Syringa and Fraxinus: secoiridoid precursors. Phytochemistry 40: 773–784.
  • Felsenstein J. 1985. Confidence limits on phylogenesis: An approach using the bootstrap. Evolution 39: 783–791.
  • Fiala J.L. 2002. Lilacs: The genus Syringa. Timber Press, INC. Oregon USA
  • Gardes M., Bruns T.D. 1993. ITS primers with enhancedspecificity for Basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118.
  • Gerbi S. 1985. Evolution of ribosomal DNA. In “Molecular evolutionary genetics”. MacIntyre R. (ed.). Molecular Genetics. Plenum Press, New York: 419–517.
  • Grimm G.W., Denk T., Hemleben V. 2007. The evolutionary history andsystematics of Acer section Acer – a case study of low-level phylogenetics. Plant Systematics and Evolution 267: 215–253.
  • Harpke D., 2005. Non-concertedITS evolution and analysis of functional andnon-functional 5.8S rRNA genes in genus Mammillaria (Cactaceae). Diploma thesis. Martin-Luther-University Halle.
  • Harpke D., Peterson A., Hoffmann M.H., Roser M. 2006. Phylogenetic evaluation of chloroplast trnL–trnF DNA sequence variation in the genus Mammillaria Haworth (Cactaceae). Schlechtendalia 14: 7–16.
  • Hausner G., Wang X. 2005. Unusual compact rDNA gene arrangements within some members of the Ascomycota: Evidence for molecular co-evolution between ITS1 and ITS2. Genome 48: 648–660.
  • Hershkovitz M.A., Lewis L.A. 1996. Deep-level diagnostic value of the rDNA-ITS region. Molecular Biology and Evolution 13: 1276–1295.
  • Hillis D.M., Dixon M.T. 1991. Ribosomal DNA: Molecular evolution andphylogenetic inference. Quarterly Review of Biology 66: 411–453.
  • Kim K.J., Jansen R.K. 1998. A Chloroplast DNA Phylogeny of Lilacs (Syringa, Oleaceae): Plastome Groups Show a Strong Correlation with Crossing Groups. American Journal of Botany 85: 1338–1351.
  • Ko H.L., Henry R.J. 1996. Specific 5S ribosomal RNA primers for plant species identification in admixtures. Plant Molecular Biology Reporter 14: 33–43.
  • Kochieva E.Z., Ryzhova N.N., Molkanova O.I., Kudryavtsev A.M., Upelniek V.P., Okuneva I.B. 2004. The Genus Syringa: molecular markers of species andcultivars. Russian Journal of Genetics 40: 30–32.
  • Li J.H., Alexander J.H., Zhang D.L. 2002. Paraphyletic (Oleaceae): Evidence from Sequences of Nuclear Ribosomal DNA ITS andETS Regions. Systematic Botany 27: 592–597.
  • Liston A., Robinson W.A., Oliphant J.M., Alvarez-Buylla E.R. 1996. Length Variation in the Nuclear Ribosomal DNA Internal Transcribed Spacer Region of Non – Flowering Seed Plants. Systematic Botany 21: 109–120.
  • McManus D. P., Bowles J. 1996. Molecular genetic approaches to parasite identification: their value in diagnostic parasitology and systemic. International Journal for Parasitology 26: 687–704.
  • Mondal T.K. 2002. Assessment of genetic diversity of tea (Camellia sinensis (L.) O. Kuntze) by inter simple sequence repeat polymerase chain reaction. Euphytica 128: 307–315.
  • Nei M., Li W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings National Academy of Science USA 76: 5269–5273.
  • Ochieng J.W., Henry R.J., Baverstock P.R., Steane D.A., ShepherdM. 2007. Nuclear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs. Molecular Phylogenetics and Evolution 44: 752–764.
  • Persson C. 2000. Phylogeny of the neotropical Alibertia Group (Rubiaceae), with emphasis on the genus Alibertia, inferredfrom ITS and5S ribosomal DNA sequences. American Journal of Botany 87: 1018–1028.
  • Pfosser M., Yemelyanava H., Leonhardt W. 2000. Identification of cultivars and hybrids in Syringa and Cucurbita by DNA fingerprinting. Acta Horticulturae (ISHS) 530: 455–462.
  • Pillay M. Kenny S.T. 1996. Structure andinheritance of ribosomal DNA variants in cultivatedandwild hop, Humulus lupulus L. Theoretical and Applied Genetics 93: 333–340.
  • Poczai P., Hyvönen J. 2010. Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects. Molecular Biology Reports 37: 1897–1912.
  • Pringle J.S. 1977. Interspecific hybridization experiments in Syringa series Villosae (Oleaceae). Baileya 20: 49–91.
  • Ran YD., Hammett K.R.W., Murray B.G. 2001. Phylogenetic Analysis andkaryotype evolution in the genus Clivia (Amaryllidaceae). Annals of Botany 87: 823–830.
  • Rzepka-Plevneš D., Smolik M., Tańska K. 2006. Genetic similarity of choosen Syringa species determinedby the ISSR-PCR technique. Dendrobiology 56: 61–67.
  • Sax K. 1945. Lilac species hybrids. Journal of the Arnold Arboretum 26: 79–84.
  • Shen Y.L., Newbury H.J., Ford-Lloy B.V. 1998. Identification of Taxa in the Genus Beta using ITS1 Sequence Information. Plant Molecular Biology Reports. 16: 147–155.
  • Shneyer V.S. 2009. DNA barcoding is a new approach in comparative genomics of plants. Russian Journal of Genetics 45: 1267–1278.
  • Singh D., Singh M. 2001. Organization of 5S ribosomal RNA genes in tea (Camellia sinensis). Genome 44: 143–146.
  • Udovicic F., McFadden G.I., Ladiges P.Y. 1995. Phylogeny of Eucalyptus and Angophora basedon 5S rDNA spacer sequence data. Molecular Phylogenetics and Evolution 4: 247–256.
  • Van de Peer Y., De Wachter R. 1994. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Computer Applied Bioscience 10: 569–570.
  • Venkateswarlu K., Nazar R. 1991. A conservedcore structure in the 18–25S rRNA intergenic region from tobacco, Nicotiana rustica. Plant Molecular Biology 17: 189–194.
  • Vilgalys R., Hester M. 1990. Rapidgenetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246.
  • Schulenburg J.H.G.V., Hancock J.M., Pagnamenta A., Sloggett J.J., Majerus M.E.N., Hurst G.D.D. 2001. Extreme length andlength variation in the first ribosomal internal transcribedspacer of ladybird beetles (Coleoptera: Coccinellidae). Molecular Biology and Evolution 18: 648–660.
  • Wallander E., Albert V.A. 2000. Phylogeny and classification of Oleaceae basedon rps16 and trnl-f sequence data. American Journal of Botany 87: 1827–1841.
  • White T.J., Bruns T., Lee S., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp 315–322 in PCR protocols: a guide to methods and applications, eds. M. Innis, D. Gelfand, J. Sninsky, and T. White. San Diego: Academic Press.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.