Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 21 | 3 |

Tytuł artykułu

Biometeorological determinants of the tropospheric ozone concentration in the suburban conditions of Wrocław, Poland

Treść / Zawartość

Warianty tytułu

Języki publikacji



Our aim was to determine relationships between the tropospheric ozone concentration and the nitrogen dioxide concentration, selected meteorological factors and radiation-effective temperature in the suburban area of the city of Wroclaw. Hourly data from 2006-2011 used in the study included concentrations of tropospheric ozone, nitrogen dioxide concentrations, air temperature, air humidity, wind velocity and total irradiance of the sun. Radiation-effective temperature (TRE) was determined on the basis of the four meteorological elements. Concentrations of ozone in southwest Poland show annual, seasonal and daily variation. The highest values occur in the warmest time of the year and day, while the lowest ones are noted in the cold season of the year, in October and in the morning. The variation of ozone concentrations was found to be shaped by changes in nitrogen dioxide concentrations, meteorological elements and the bioclimatic indicator. Ozone and nitrogen dioxide were mutually most strongly correlated in the winter season. In the warm season of the year, from April to October, the ozone concentration was mainly shaped by air temperature, solar radiation, wind velocity and TRE (positive effects), and by relative humidity of the air (a negative influence). The multiple regression equation best described the ozone concentration variation in May. Increased concentrations of ozone were found to appear during thermal stress, expressed as a sensation of warmth/heat, but could also occur under thermal comfort conditions.

Słowa kluczowe








Opis fizyczny



  • Institute of Landscape Architecture, Wroclaw University of Environmental and Life Sciences, Grunwaldzka St. 55, 50-357 Wroclaw, Poland
  • Institute of Landscape Architecture, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
  • Department of Spatial Econometrics, Adam Mickiewicz University in Poznan, Poznan, Poland


  • Błażejczyk K. 2004. Bioclimatic principles of recreation and tourism in Poland. IGiPZ PAN, Warszawa. Pr. Geograf., 192: 291. (in Polish)
  • Chameides W.L, Lindsay R.W., Richardson J., Kiang C.S. 1988. The role of biogenic hydrocarbons in urban photochemical smog: Atlanta – a case study. Science, 241: 1473-1474. DOI: 10.1126/science.3420404
  • Chen L., Yu B., Chen Z., Li B., Wu J. 2014. Investigating the temporal and spatial variability of total ozone column in the Yangtze River Delta using satellite data: 1978–2013. Remote Sens., 14(6): 12527-12543. DOI: 10.3390/rs61212527
  • EEA 2014. Air quality in Europe – 2014 report. Report No 5/2014. DOI: 10.2800/22847 http://
  • Girgzdiene R., Sakalauskiene G. 2007. Dynamic model of daily ozone and nitrogen dioxide concentration for the background conditions. Ekologia (Bratislava), 26(3): 330-339.
  • Godłowska J. 2004. Analysis of variability of mean 8-hour ozone concentration (10 to 18 UTC) over Poland and its connection to meteorology. Wiad. IMGW, 26: 67-78. (in Polish)
  • Godłowska J., Tomaszewska A.M. 2006. 8-hour mean ozone concentration (8O3) vs. Litynski’s types of circulation at stations of national ozone monitoring. Wiad. IMGW, 29(3-4): 3-16. (in Polish)
  • Hałuszka J., Pisiewicz K., Miczyński J., Roemer W., Tomalak W. 1998. Air pollution and respiratory health in children: the PEACE Panel Study in Cracow, Poland. Eur. Respir. Rev., 52(8): 94-100.
  • Jacobson M.Z. 2005. Fundamentals of atmospheric modeling. Cambridge University Press.
  • Kalbarczyk R., Kalbarczyk E. 2009. Seasonal variability of tropospheric ozone concentration in chosen localities of north-western Poland shaped by meteorological conditions. Ekológia (Bratislava), 28(3): 277-290. DOI: 10.4149/ekol-2009-03-277
  • Kalbarczyk R., Sobolewski R., Kalbarczyk E. 2015. Assessment of human thermal sensations based on bioclimatic indices in a suburban population, Wrocław (SW Poland). Pol. J. Natur. Sci., 30(2): 185-201.
  • Li Y., Wang W., Wang J., Zhang X., Lin W., Yang Y. 2011. Impact of air pollution control measures and weather conditions on asthma during the 2008 Summer Olympic Games in Beijing. Int. J Biometeorol., 55(4): 547-554, DOI: 10.1007/s00484-010-0373-6
  • Liu X., Mauresberger G., Moller D. 1997. The effects of cloud processes on the tropospheric photochemistry: an improvement of the EURAD model with a coupled gaseous and aqueous chemical mechanism. Atmos. Environ., 31(19): 3119-3135. DOI:10.1016/S1352-2310(97)00057-5
  • Lorenc H. (ed) 2005. Climate atlas of Poland. Institute of Meteorology, Water Management, Warszawa. (in Polish)
  • Madrigano J., Jack D., Brooke Anderson G., Bell M.L., Kinney P.L. 2015. Temperature, ozone, and mortality in urban and non-urban counties in the northeastern United States. Environ. Health., 14(1): 3. DOI: 10.1186/1476-069X-14-3
  • Marć M., Zabiegała B., Simeonov V., Namieśnik J. 2014. The relationships between BTEX, NOx, and O3 concentrations in urban air in Gdansk and Gdynia, Poland. Clean – Soil, Air, Water, 42(10): 1326-1336. DOI: 10.1002/clen.201300188
  • Mavrakis A., S panou A., Pantavou K. , Katavoutas G., Theoharatos G., C hristides A., Verouti E. 2012. Biometeorological and air quality assessment in an industrialized area of eastern Mediterranean: the Thriassion Plain, Greece. Int. J. Biometeorol., 56(4): 737-747. DOI: 10.1007/s00484-011-0475-9
  • Paliatsos A. G., Nastos P. TH. 1999. Relation between air pollution episodes and discomfort index in the Greater Athens area, Greece. Global Nest: the Int. J., 1(2): 91-97.
  • Papanastasiou D. K ., Melas D., Bartzanas T., Kittas C. 2009. Temperature, comfort and pollution levels during heat waves and the role of sea breeze. Int. J Biometeorol., 54(3): 307-317. DOI: 10.1007/s00484-009-0281-9
  • Pawlak I., Jarosławski J. 2015. The influence of selected meteorological parameters on the concentration of surface ozone in the central region of Poland. Atmosphere-Ocean, 53(1): 126-139. DOI: 10.1080/07055900.2014.969189
  • Reid C.E., Snowden J.M., Kontgis C., Tager I.B. 2012. The role of ambient ozone in epidemiologic studies of heat-related mortality. Environ. Health Perspect., 120(12): 1627-1630. DOI: 10.1289/ehp.1205251
  • Rogalski L., Smoczyński L., Krzebietke S., Lenart L., Mackiewicz-Walec E. 2014. Changes in sulphur dioxide concentrations in the atmospheric air assessed during short-term measurementsin the vicinity of Olsztyn, Poland. J Elem., 19(3): 735-748. DOI: 10.5601/jelem. 2014.19.2.634
  • Rozbicka K., Rozbicki T. 2014. Spatiotemporal variations of tropospheric ozone concentrations in the Warsaw Agglomeration (Poland). Ann. Warsaw Univ. Life Sci. – SGGW, Land Reclam., 46(3): 247-261. DOI: 10.2478/sggw-2014-0020
  • Rozbicka K., Majewski G., Rozbicki T. 2014. Seasonal variation of air pollution in Warsaw conurbation. Meteorologische Zeitschrift, 23(2): 175-179. DOI: 10.1127/0941-2948/2014/0453
  • Saini R., Satsangi G.S., Taneya A. 2008. Concentrations of surface O3, NO2 and CO during winter seasons at a semi-arid region – Agra, India. Ind. J. Radio & Space Physics, 37: 121-130.
  • Sillman S., Samson P.J. 1995. Impact of temperature on oxidant photochemistry in urban, polluted rural and remote environments. J. Geophys. Res., 100(D6): 11497-11508.
  • SOER 2015 – The European environment – state and outlook 2015 / Synthesis: http://www.eea.
  • Strużewska J., Kamiński J.W., Durka P., Zdunek M. 2012. Operational forecasting of the tropospheric ozone concentration in the period 2013-2015 using modeling – a method. Główny Inspektorat Ochrony Środowiska, Warszawa. (in Polish)

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.